Системa очистки воды , Химикаты для металла и буровой системы

Chloramine T
Tosylchloramide sodium; Tosilcloramida sodica; Aktiven; Chloraseptine; Tochlorine; tolamine; Chlorazene; Chlorazone; Clorina; Halamid; Mianine; (N-Chloro-p-toluenesulfonamido) sodium; Sodium p-Toluenesulfonchloramide; p-Toluenesulfonchloramide Sodium Salt; N-Chloro-4-methylbenzenesulfonamide sodium salt; Tosylchloramidnatrium; Tosylchloramide sodique; N-Chloro-p-toluenesulfonamide, sodium salt; Sodium p-toluenesulfonchloramine; Sodium N-chloro-para-toluenesulfonamidate CAS NO:127-65-1 (Anhydrous) CAS NO: 7080-50-4 (Trihydrate)
Chlorates de métaux alcalins ( SODIUM CHLORATE) Chlorate de sodium
HET anhydride; 1,4,5,6,7,7-Hexachloro-5-norbornene-2,3-dicarboxylic anhydride 1,4,5,6,7,7-Hexachlorobicyclo[2.2.1]-5-heptene-2,3-dicarboxylic acid anhydride 4,5,6,7,8,8-hexachloro-3a,4,7,7a-tetrahydro-4,7-Methanoisobenzofuran-1,3-dione Perchlorobicyclo[2.2.1]-5-heptene-2,3-dicarboxylic anhydride CAS NO:115-27-5
CHLORENDIC ACID ( HET- ACID &ANHYDRIDE)
CHLORHEXIDINE, N° CAS : 55-56-1, Nom INCI : CHLORHEXIDINE, Nom chimique : 2,4,11,13-Tetraazatetradecanediimidamide, N,N''-bis(4-chlorophenyl)-3,12-diimino-; Biguanide, 1,1'-hexamethylenebis(5-(p-chlorophenyl)-, N° EINECS/ELINCS : 200-238-7, Classification : Règlementé, Conservateur, La concentration maximale autorisée dans les préparations cosmétiques prêtes à l'emploi est de 0,3 % (en chlorhéxidine). Ses fonctions (INCI) : Antimicrobien : Aide à ralentir la croissance de micro-organismes sur la peau et s'oppose au développement des microbes, Agent d'hygiène buccale : Fournit des effets cosmétiques à la cavité buccale (nettoyage, désodorisation et protection), Conservateur : Inhibe le développement des micro-organismes dans les produits cosmétiques.Noms français : Chlorhexidine. Noms anglais : Chlorhexidin; Chlorhexidine [Wiki] 1,1'-Hexamethylenebis[5-(4-chlorophenyl)biguanide] 2,4,11,13-Tetraazatetradecanediimidamide, N,N''-bis(4-chlorophenyl)-3,12-diimino- 200-238-7 [EINECS] 2826432 [Beilstein] 55-56-1 [RN] Chlorhexidin [Czech] chlorhexidine [French] Chlorhexidine base Chlorhexidinum [Latin] clorhexidina [Spanish] Diamide N,N''''-1,6-hexanediylbis[N'-(4-chlorophényl)(imidodicarbonimidique)] [French] MFCD00009673 [MDL number] N,N''''-1,6-Hexandiylbis[N'-(4-chlorphenyl)(imidodikohlenstoffimiddiamid)] [German] N,N''''-1,6-Hexanediylbis[N'-(4-chlorophenyl)(imidodicarbonimidic diamide)] N,N''''-hexane-1,6-diylbis[N'-(4-chlorophenyl)(imidodicarbonimidic diamide)] хлоргексидин [Russian] كلورهيكسيدين [Arabic] 氯己定 [Chinese] BIOSCRUB BRIAN CARE CIDA-STAT EXIDINE [Wiki] E-Z SCRUB Hibispray MICRODERM Oro-Clense PERIOCHIP PERIOGARD [Wiki] PHARMASEAL SCRUB CARE PREVACARE R Savloclens Savlon Babycare Sterido STERI-STAT Superspray (1E)-2-[6-[[amino-[(E)-[amino-(4-chloroanilino)methylene]amino]methylene]amino]hexyl]-1-[amino-(4-chloroanilino)methylene]guanidine (1E)-2-[6-[[amino-[(E)-[amino-(4-chloroanilino)methylidene]amino]methylidene]amino]hexyl]-1-[amino-(4-chloroanilino)methylidene]guanidine (E)-1-[(E)-{AMINO[(4-CHLOROPHENYL)AMINO]METHYLIDENE}AMINO]-N`-{6-[(E)-{AMINO[(E)-{AMINO[(4-CHLOROPHENYL)AMINO]METHYLIDENE}AMINO]METHYLIDENE}AMINO]HEXYL}METHANIMIDAMIDE [55-56-1] {[(4-chlorophenyl)amino]iminomethyl}{[(6-{[({[(4-chlorophenyl)amino]iminomethy l}amino)iminomethyl]amino}hexyl)amino]iminomethyl}amine {[(4-chlorophenyl)amino]iminomethyl}{[(6-{[({[(4-chlorophenyl)amino]iminomethyl}amino)iminomethyl]amino}hexyl)amino]iminomethyl}amine 1-(4-chlorophenyl)-3-[N-[6-[[N-[N-(4-chlorophenyl)carbamimidoyl]carbamimidoyl]amino]hexyl]carbamimidoyl]guanidine 1,1′-Hexamethylenebis[5-(4-chlorophenyl)biguanide] 1,1′-(Hexane-1,6-diyl)bis[5-(4-chlorophenyl)biguanide] diacetate 1,1′-Hexamethylenebis(5-[p-chlorophenyl]biguanide) 1,1'-Hexamethylene bis(5-(p-chlorophenyl)biguanide) 1,1'-hexamethylenebis(5-(p-chlorophenyl)biguanide 1,1'-Hexamethylenebis(5-(p-chlorophenyl)biguanide) 1,1'-Hexamethylenebis[5-(p-chlorophenyl)biguanide] 1,6-Bis(5-(p-chlorophenyl)biguandino)hexane 1,6-bis(5-(p-chlorophenyl)biguanidino)hexane 1,6-Bis(N5-[p-chlorophenyl]-N1-biguanido)hexane 1,6-Bis(N5-p-chlorophenyl-N'-diguanido)hexane 1,6-Bis(p-chlorophenyldiguanido)hexane 1,6-Bis[N'-(p-chlorophenyl)-N5-biguanido]hexane 1,6-Di(4'-chlorophenyldiguanido)hexane 1,6-DI(N-P-CHLOROPHENYL-DIGUANIDO) HEXANE 1,6-Di(N-p-chlorophenyldiguanido)hexane 118-75-2 [RN] 2,4,11,13-tetraazatetadecanediimidamide 2-[6-[[amino-[[amino-(4-chloroanilino)methylidene]amino]methylidene]amino]hexyl]-1-[amino-(4-chloroanilino)methylidene]guanidine 200-302-4 [EINECS] 4-12-00-01201 [Beilstein] 56-95-1 [RN] Betasept [] Biguanide, 1,1'-hexamethylenebis(5-(p-chlorophenyl)- CHLORANIL chlorhexamed forte Chlorhexidin Chlorhexidin [Czech] Chlorhexidine diacetate salt Chlorhexidine diacetate salt hydrate Chlorhexidine Dihydrochloride chlorhexidine standard Chlorhexidine Chlorhexidinum Chlorhexidinum [INN-Latin] chlorohex Chlorohexidine Cloresidina Cloresidina [DCIT] Clorhexidina Clorhexidina [INN-Spanish] clorhexidine consepsis Corsodyl [] DB00878 disodium 3-oxododecanal sulfide DYNA-HEX ebur os Eludril Exidine Fimeil Hexadol Hexadol Hexamethylenebis(5-(4-chlorophenyl)biguanide) hexident Hibiclens [] [Wiki] Hibidil [] Hibidil Hibiscrub [] Hibiscrub HIBISTAT hibitane [] Hibitane MFCD00012532 [MDL number] MFCD29505384 Microderm N-(4-CHLOROPHENYL)-1-{N`-[6-(N-{[N`-(4-CHLOROPHENYL)CARBAMIMIDAMIDO]METHANIMIDOYL}AMINO)HEXYL]CARBAMIMIDAMIDO}METHANIMIDAMIDE N-(4-chlorophenyl)-1-3-(6-{N-[3-(4-chlorophenyl)carbamimidamidomethanimidoyl]amino}hexyl)carbamimidamidomethanimidamide N,N'-Bis(4-chlorophenyl)-3,12-diimino-2,4,11,13-tetraazatetradeca- nediimidamide N,N''-Bis(4-chlorophenyl)-3,12-diimino-2,4,11,13-tetraazatetradecanediimidamide N,N'-Bis(4-chlorophenyl)-3,12-diimino-2,4,11,13-tetraazatetradecanediimidamide N',N'''''-hexane-1,6-diylbis[N-(4-chlorophenyl)(imidodicarbonimidic diamide)] NOLVASAN [Wiki] Oro-Clense PAROEX Perichlor Peridex [] Periogard Oral Rinse Periogard Oral Rinse Pharmaseal Scrub Care Prevacare R promax Rotersept [] Rotersept SORETOL STERILON [] Sterilon Tubulicid
CHLORHEXIDINE
CHLORHEXIDINE DIACETATE, N° CAS : 56-95-1 - Diacétate de chlorhexidine, Nom INCI : CHLORHEXIDINE DIACETATE, Nom chimique : N,N'-bis(4-Chlorophenyl)-3,12-diimino-2,4,11,13-tetraazatetradecanediamidine di(acetate), N° EINECS/ELINCS : 200-302-4, Classification : Règlementé, Conservateur, La diactétate de Chlorhexidine est un sel de la Chlorhexidine utilisée en cosmétique en tant que conservateur.Ses fonctions (INCI): Antimicrobien : Aide à ralentir la croissance de micro-organismes sur la peau et s'oppose au développement des microbes, Agent d'hygiène buccale : Fournit des effets cosmétiques à la cavité buccale (nettoyage, désodorisation et protection), Conservateur : Inhibe le développement des micro-organismes dans les produits cosmétiques.Chlorhexidine diacetate 1,1'-Hexamethylenebis(5-[p-chlorophenyl]biguanide) 200-302-4 [EINECS] 56-95-1 [RN] 5908ZUF22Y Acide acétique - diamide N,N''''-1,6-hexanediylbis[N'-(4-chlorophényl)(imidodicarbonimidique)] (2:1) [French] CHLORASEPT 2000 [] Chlorhexidine acetate chlorzoin [] DU1930000 Imidodicarbonimidic diamide, N,N''''-1,6-hexanediylbis[N'-(4-chlorophenyl)-, acetate (1:2) [ACD/Index Name] MFCD00012532 [MDL number] N,N''''-1,6-Hexandiylbis[N'-(4-chlorphenyl)(imidodikohlenstoffimiddiamid)]acetat (1:2) [German] N,N''''-1,6-Hexanediylbis[N'-(4-chlorophenyl)(imidodicarbonimidic diamide)] acetate (1:2) N,N''''-Hexane-1,6-diylbis[N'-(4-chlorophenyl)(imidodicarbonimidic diamide)] acetate (1:2) UNII-5908ZUF22Y (E)-1-[(E)-{AMINO[(4-CHLOROPHENYL)AMINO]METHYLIDENE}AMINO]-N`-{6-[(E)-{AMINO[(E)-{AMINO[(4-CHLOROPHENYL)AMINO]METHYLIDENE}AMINO]METHYLIDENE}AMINO]HEXYL}METHANIMIDAMIDE [amino-[[amino-(4-chloroanilino)methylidene]amino]methylidene]-[6-[amino-[[amino-(4-chloroanilino)methylidene]amino]methylidene]azaniumylhexyl]azanium {[(4-chlorophenyl)amino]iminomethyl}{[(6-{[({[(4-chlorophenyl)amino]iminomethyl}amino)iminomethyl]amino}hexyl)amino]iminomethyl}amine, acetic acid, acetic acid 1,1?-Hexamethylenebis(5-[p-chlorophenyl]biguanide) 1,1'-Hexamethylene bis(5-(p-chlorophenyl)biguanide) diacetate 1,1'-Hexamethylenebis(5-(p-chlorophenyl)biguanide) diacetate 1,1'-Hexamethylenebis(5-(p-chlorophenyl)biguanide), diacetate 1,1'-Hexamethylenebis(5-(p-chlorophenyl)biguanide)diacetate 1,6-Bis(5-(p-chlorophenyl)biguandino)hexane diacetate 1,6-Bis(p-chlorophenylbiguanido)hexane diacetate 1,6-Di(4'-chlorophenyldiguanidino)hexane diacetate 2,2'-hexane-1,6-diylbis(1-{(E)-amino[(4-chlorophenyl)amino]methylidene}guanidine) acetate (1:2) 2,4,11,13-Tetraazatetradecanediimidamide, N,N''-bis(4-chlorophenyl)-3,12-diimino-, diacetate (9CI) 200-238-7 [EINECS] 206986-79-0 [RN] 55-56-1 [RN] acetic acid and 2-[6-[[amino-[[amino-(4-chloroanilino)methylidene]amino]methylidene]amino]hexyl]-1-[amino-(4-chloroanilino)methylidene]guanidine Arlacide A Bactigras Biguanide, 1,1'-hexamethylenebis(5-(p-chlorophenyl)-, diacetate BIS(ACETIC ACID) Bis(p-chlorophenyldiguanidohexane) diacetate chlorhexidine acatate Chlorhexidine acetate (VAN) Chlorhexidine acetate hydrate(1:2:x) Chlorhexidine di(acetate) chlorhexidine diacatate Chlorhexidine diacetate hydrate Chlorhexidine diacetate salt Chlorhexidine Gluconate 20% chlorhexidineacetate Chlorohexidine diacetate diacetate Hibitane diacetate N-(4-CHLOROPHENYL)-1-{N`-[6-(N-{[N`-(4-CHLOROPHENYL)CARBAMIMIDAMIDO]METHANIMIDOYL}AMINO)HEXYL]CARBAMIMIDAMIDO}METHANIMIDAMIDE; BIS(ACETIC ACID) N-(4-CHLOROPHENYL)-N'-({[6-(N'-{[(4-CHLOROPHENYL)AMINO](IMINIO)METHYL}CARBAMIMIDAMIDO)HEXYL]AMINO}(IMINIO)METHYL)GUANIDINE DIACETATE N,N'-Bis(4-chlorophenyl)-3,12-diimino-2,4,11,13-tetraazatetradeca- nediimidamide, diacetate N,N''-Bis(4-chlorophenyl)-3,12-diimino-2,4,11,13-tetraazatetradecanediimidamide Diacetate N',N'''''-hexane-1,6-diylbis[N-(4-chlorophenyl)(imidodicarbonimidic diamide)] diacetate
CHLORHEXIDINE DIACETATE
CHLORHEXIDINE DIUNDECYLENATE, N° CAS : 1884575-91-0., Nom INCI : CHLORHEXIDINE DIUNDECYLENATE, Ses fonctions (INCI): Antimicrobien : Aide à ralentir la croissance de micro-organismes sur la peau et s'oppose au développement des microbes, Déodorant : Réduit ou masque les odeurs corporelles désagréables, Agent d'hygiène buccale : Fournit des effets cosmétiques à la cavité buccale (nettoyage, désodorisation et protection)
CHLORHEXIDINE DIUNDECYLENATE
SYNONYMS Peridex®; Periochip®, Periogard Oral Rinse®; 1,1'-Hexam ethylene bis(5- (p-chlorophenyl) biguanide) digluconate; 1,6-Bis(5-(p- chlorophenyl) biguandino)hexane digluconate; Arlacide G; Bacticlens; Hibitane 5; Orahexal; Peridex; D-Gluconsäure, N,N''-Bis (4-chlorphenyl) -3,12-diimino-2,4,11,13- tetraazatetradecan diamidin (German); ácido D-glucónico, N,N''-bis (4-clorofenil)- 3,12-diimino-2,4,11,13- tetraazatetradecanodiamidina (Spanish), Acide D-gluconique, N,N''-bis(4-chlorophényl)- 3,12-diimino-2,4,11,13- tétraazatétradécanediamidine (French); D-Gluconic acid, N,N''-bis(4-chlorophenyl)-3,12- diimino-2,4,11,13- tetraaza tetradecanediimidamide (2:1); CAS NO 18472-51-0
CHLORHEXIDINE GLUCONATE
SYNONYMS Peridex®; Periochip®, Periogard Oral Rinse®; 1,1'-Hexam ethylene bis(5- (p-chlorophenyl) biguanide) digluconate; 1,6-Bis(5-(p- chlorophenyl) biguandino)hexane digluconate; Arlacide G; Bacticlens; Hibitane 5; Orahexal; Peridex; D-Gluconsäure, N,N''-Bis (4-chlorphenyl) -3,12-diimino-2,4,11,13- tetraazatetradecan diamidin (German); ácido D-glucónico, N,N''-bis (4-clorofenil)- 3,12-diimino-2,4,11,13- tetraazatetradecanodiamidina (Spanish), Acide D-gluconique, N,N''-bis(4-chlorophényl)- 3,12-diimino-2,4,11,13- tétraazatétradécanediamidine (French); D-Gluconic acid, N,N''-bis(4-chlorophenyl)-3,12- diimino-2,4,11,13- tetraaza tetradecanediimidamide (2:1); CAS NO 18472-51-0
Chlorhydrate de chlorhexidine ( CHLORHEXIDINE DIHYDROCHLORIDE)
Chlorinated paraffins; Chlorowax; Adekacizer; Cerechlor; Chlorinated paraffin waxes; Chlorinated hydrocarbon waxes; Chlorinated wax; Chloroflo; Chloroparaffine; Chlorowax; Clorafin; Crechlor; Creclor CAS NO:63449-39-8
CHLORINATED PARAFFIN
CHLORINATED PARAFFIN (Chlorinated Paraffin, CP, Klorlu Parafin) PRODUCT CPW 50/52 PROPERTIES STANDARD METHOD Chemical Name Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) CP 50/52 - Appearance Clear light yellow liquid - Chlorine Content 50-52% IF 14426-A Specific Gravity (25 °C) 1.28 ± 0.2gr / cm3 ASTM D 4052-96 Viscosity (25 °C) Poise * 12-20 ASTM D 445 Thermal Stability (4h, 175 °C), Max 0.15 % HCl IF 14426-D Appearance: white powder Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) is non-poisonous, non-inflammable low volatility, and high insulativity. It can be used as flame retardants and plasticizer. Widely used in the production of cable materials, floor, panel , shoes, rubber and other products. It also can be applied in coatings and lubricating oil additive. Antisum, damp-proof and preventing overheating are required during storage. Name and Chemical formula: CnH2n+2-yCly (%Cl=50-52) ISO 9001: 2000 ISO 14001 Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s (CPs) are complex mixtures of polychlorinated n-alkanes. The chlorination degree of CPs can vary between 30 and 70 wt%. CPs are subdivided according to their carbon chain length into short chain CPs (SCCPs, C10–13), medium chain CPs (MCCPs, C14–17) and long chain CPs (LCCPs, C>17). Depending on chain length and chlorine content, CPs are colorless or yellowish liquids or solids. Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s are synthesized by reaction of chlorine gas with unbranched paraffin fractions ( 2 % isoparaffins, 100 ppm aromatics) at a temperature of 80–100 °C. The radical substitution may be promoted by UV-light. CxH(2x+2) + y Cl2 → CxH(2x−y+2)Cly + y HCl When the desired degree of chlorination is achieved, residues of hydrochloric acid and chlorine are blown off with nitrogen. Epoxidized vegetable oil, glycidyl ether or organophosphorous compounds may be added to the final product for improved stability at high temperatures. Commercial products have been classified as substances of unknown or variable composition. CPs are complex mixtures of chlorinated n-alkanes containing thousands of homologues and isomers which are not completely separated by standard analytical methods. CPs are produced in Europe, North America, Australia, Brazil, South Africa and Asia. In China, where most of the world production capacity is located, 600,000 tons of Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s were produced in 2007. Product Name: Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) CPW 50/52 Recommend of use: Plasticizers and flame retardant additive and Solvent CAS No: 85535-84-8 Chemical formula: CnH2n+2-yCly (%Cl=50-52) Ingredient: % 50-52 Chlorine, Liquid CPW Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) (CPW) / TECHNICAL SPECIFICATION S.No. PARAMETER TEST METHOD UNIT SPECIFICATION 1 Appearance - - Pale Yellow Liquid 2 Color ASTM D1045 Hazen 125 Max 3 Chlorine Content IS-14426 % 50-52 4 Density @270C ASTM D1045 gr/cm3 1.29+-0.1 5 Thermal Stability IS-14426 % 0.1 Max 6 Acidity IS-14426 % 0.1 Max 7 Viscosity @270C ASTM D445 cst 500-1000 Chlorine Paraffin (CPW) Chlorine paraffin is used as a secondary plasticizer in PVC processes. It shows plasticizer characteristics. Because it is economical, it provides savings relative to primary plasticizers. Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s have no characteristic mild and unpleasant smell. The odor is likely due to small amounts of relative low molecular mass with small but measurable vapor pressure. The carbon chain length and chlorine content of paraffin determine the chemical and physical properties of Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin). It increases in carbon chain length and chlorination degrees of certain paraffins increase viscosity and density, but reduces volatility. Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s normally contain stabilizers that are added to prevent degradation. Common stabilizers include epoxidized esters and epoxided compounds such as soybean oils, pentaeritritol, thymol, urea, acetonitriles, and organic phosphates. Chlorine Paraffin Which Areas Used The areas where chlorine paraffin can be used are as follows: It is used in vinyl and acrylic paints As a non-flammable plasticizer in PVC formulations, It is used as a high pressure additive in lubricants as a burn retardant additive in cable cases. It is used as working fluid in metal processing Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin), General specification: Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) is manufactured by the chlorination of n-paraffin or paraffin wax, normally in a batch process. The reaction is exothermic and leads to the generation of the by-product hydrochloric acid. After removing residual traces of acid, a stabilizer is added to produce finished batches. Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin), Applications: Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) uses for replacing the main plastics Dioxyl Phthalate-Dioxo-Acetyl Phthalate Expansion and Plasticizers in the processing of vinyl polymers, auxiliary polymers and chlorinated tires of neoprene Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) is an additives in lubricating oils and industrial oils such as oils in rollers, CP is use as drawing of refractory materials, production of PVC films, Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) also use for making artificial leather production, rubber industry, cable sheathing, flexible PVC pipes production, and production of marine paints. Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) is a plasticizer largely used in PVC. Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) is used as an additive in industrial lubricants like gear oil as a fire retardant chemical additive. Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) is used as plasticizers in paint sealants and adhesives. The main advantage over other alternatives is inertness and it enhances flame retardant properties. Cpw with high chlorine content is used as flame retardants in a wide range of rubbers and polymer systems. Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) is also used in formulation of metal working lubricants as they are one of the most effective extreme pressure additives for lubricants used in a wide range of machining and engineering operations. Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin), Packing: Our Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) is packed in 220 kg plastic drums, shrink and palletize. We can offer Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) in customized packing, as well. Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin), export destinations: Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin), mostly offered by customers who are manufacturing the best quality PVC, Leather, Cable making, Marine Paints. So, we are exporting Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) to African, European, South American, East Asian countries. Our Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) is producing, packing and exporting to mention above destinations, under Iran Chemical Mine authorization by the best Iranian Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) raw materials in accordance with ASTM standard. For taking updated price for Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) and knowing more about further details, please contact us by our contact lines/email. Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin), technical Specification CP grade cp 50 Chlorine content 50-52% Appearance pale yellow liquid Colour in hazen unit 120 Specific gr. At 30 c 1. 26-1. 28 Viscosity at 25 c in poise 13-18 Thermal stability at 180 c for 1 hour pale yellow to light yellow Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s (CPs) are complex mixtures of polychlorinated n-alkanes. The chlorination degree of CPs can vary between 30 and 70 wt%. CPs are subdivided according to their carbon chain length into short-chain CPs (SCCPs, C10–13), medium-chain CPs (MCCPs, C14–17) and long-chain CPs (LCCPs, C>17). Depending on chain length and chlorine content, CPs are colorless or yellowish liquids or solids. Contents 1 Production of Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) 2 Industrial applications of Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) 3 Safety of Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) 4 References 5 Sources 6 Further reading 7 External links Production of Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s are synthesized by reaction of chlorine gas with unbranched paraffin fractions (<2 % isoparaffins, <100 ppm aromatics) at a temperature of 80–100 °C.[2] The radical substitution may be promoted by UV-light.[3][1] CxH(2x+2) + y Cl2 → CxH(2x−y+2)Cly + y HCl When the desired degree of chlorination is achieved, residues of hydrochloric acid and chlorine are blown off with nitrogen. Epoxidized vegetable oil, glycidyl ether or organophosphorous compounds may be added to the final product for improved stability at high temperatures.[4][5] Commercial products have been classified as substances of unknown or variable composition. CPs are complex mixtures of chlorinated n-alkanes containing thousands of homologues and isomers[6] which are not completely separated by standard analytical methods.[7] CPs are produced in Europe, North America, Australia, Brazil, South Africa and Asia.[8] In China, where most of the world production capacity is located, 600,000 tons of Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s were produced in 2007.[9] Production and use volumes of CPs exceeded 1,000,000 tons in 2013.[10] Industrial applications Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) Production of CPs for industrial use started in the 1930s.[11] Currently, over 200 CP formulations are in use for a wide range of industrial applications, such as flame retardants and plasticisers, as additives in metal working fluids, in sealants, paints, adhesives, textiles, leather fat and coatings.[12][1] Safety Short-chain CPs are classified as persistent and their physical properties (octanol-water partition coefficient (logKOW) 4.4–8, depending on the chlorination degree) imply a high potential for bioaccumulation. Furthermore, SCCPs are classified as toxic to aquatic organisms, and carcinogenic to rats and mice. Therefore, it was concluded that SCCPs have PBT and vPvB properties and they were added to the Candidate List of substances of very high concern for Authorisation under REACH Regulation.[13] SCCPs (average chain length of C12, chlorination degree 60 wt%) were categorised in group 2B as possibly carcinogenic to humans from the International Agency for Research on Cancer (IARC).[14] In 2017, it was agreed to globally ban SCCPs under the Stockholm Convention on Persistent Organic Pollutants, effective December 2018. However, also MCCPs are toxic to the aquatic environment and persistent; MCCPs in soil, biota, and most of the sediment cores show increasing time trends over the last years to decades; MCCP concentrations in sediment close to local sources exceed toxicity thresholds such as the PNEC. Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) (CP) – is a complex chemical substance of polychlorinated n-alkanes used in multiple applications across diverse industries. The chlorination degree of Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) (CP) can vary between 30 and 70 wt%. CPs are subdivided according to their carbon chain length into : Short-chain C10-C13 Medium-chain C14-C17 Long-chain C>17 Depending on chain length and chlorine content, Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) (CP) are colourless or yellowish liquids or solids Production Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s are synthesized for industrial by reaction of chlorine gas with unbranched paraffin fractions at a temperature of 80–100 °C since the 1930s. Commercial products have been classified as substances of unknown or variable composition. CPs are complex mixtures of chlorinated n-alkanes containing thousands of homologues and isomers which are not completely separated by standard analytical methods. USES The main application for Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) (CP) is as a flame retardant. When exposed to high temperatures, Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) (CP) releases a substantial amount of HCI. In its condensed phase, HCI contributes to the formation of char. In its vapor phase, it can function as a flame poison. Currently, over 200 formulations as Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) (CP) are in use for a wide range of industrial applications as: plasticizer: CP is used in some types of flooring, wire and cable insulation, and garden hose. paints – sealants – coatings : In traffic markings paint and marine applications, such as coatings for industrial flooring, vessels, swimming pools, etc. adhesives, caulks, plastics, coolant or lubricant in metal working fluids, additives, textiles, leather fat, coating, upholsteryfurniture, flooring. Benefits of using Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) Overall Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) offers: Flame-retardant low-cost solution for a wide range of applications. Greater flexibility at lower temperatures than conventional plasticizers. Improved resistance to both water and chemicals. Improved stain resistance. Viscosity regulation for PVC plastisols stability during dip and rotational molding. Lubricant for metal surface during cleaning of metal parts. The cleaning process eliminates contaminants like grease and oil, it can also remove plasticizers that are required for an effective formulation. handling the storage, transport, export & import formalities of Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) (CP) globally. Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s are a class of chemicals used for a variety of applications. They can be classified according to the length of their chlorine chains, and commercial formulations may include a mix of compounds in this class. CAS 106232-86-4 is considered a Long Chain Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) (LCCP), with 24 chlorine atoms. The long form is less environmentally sensitive than short-length varieties. Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) is largely inert, almost insoluble in water, and flame retardant. It can function as a plasticizing additive to for metal lubricants and cutting fluids, plastics, rubber, paint, adhesives, and more. Most of the world’s Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) is produced in China. Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s are slowly absorbed by the dermal route in Sprague-Dawley rats. Two (14)C-labeled Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s, C18;50-53% Cl (CP-LH) and C28;47% Cl (CP-LL), were applied to rat skin (5-7 animals of each sex) at a concentration of 66 mg/sq cm, approximately equivalent to 2000 mg/kg body weight. Only 0.7% (males) and 0.6% (females) of the C18 dose was absorbed after 96 hr. Only 0.02% of the C28 dose was absorbed in males whereas in females the level was not detectable. This indicates that increasing chain length leads to decreased permeability. Of the absorbed C18 dose, 40% was exhaled as (14)C-labeled CO2, and 20% was excreted in urine and 20% in feces. /Long chain length Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s/ The absorption of two Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s through human skin has been studied in vitro. There was no absorption of Cereclor S52 (C14-19;52% Cl, CP-MH) following a 54-hr application to the surface of the epidermal membranes using five different receptor media. Similarly, using Cereclor 56L (C10-13; 56% Cl, CP-SH; 18.5% w/w solution in a typical cutting oil) no absorption was detected for 7 hr, but after 23 hr a slow but steady rate of absorption was detected (e.g., 0.05 +/- 0.01 ug/sq cm per hr +/- SEM; n = 6; receptor medium PEG-20 oleyl ether in saline), which was maintained for the duration of the experiment (56 hr). Owing to the anticipated low rate of absorption, the Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) samples were spiked with [(14)C] n-pentadecane and [(14)C] n-undecane for Cereclor S52 and 56L, respectively, in order to facilitate detection of the absorbed material. Measurement of the (14)C-alkanes was taken as a surrogate for the Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s, on the assumption that their rates of absorption were similar. Female C57Bl mice were administered 12.5 MBq/kg body weight (340 uCi) (for autoradiography) or 1.25 MBq/kg body weight (34 uCi) (for determination of radioactivity) of (14)C-labeled chlorododecanes (C12) with different chlorine contents (17.5% [CP-SL], 55.9% [CP-SH] and 68.5% [CP-SH]) either by gavage or intravenous injection. Uptake of radioactivity was found by autoradiography to be highest in tissues with high cell turnover/high metabolic activity, e.g., intestinal mucosa, bone marrow, salivary glands, thymus and liver. The highest radioactivity was achieved with the Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) that had the lowest chlorine content. It was found that the long period of retention of heptane-soluble radioactivity, which indicated unmetabolized substance, in liver and fat after oral dosing increased with degree of chlorination. In this study it was also found that 30 to 60 days after injection of C12;17.5% Cl and C12;55.9% Cl a considerable retention of radioactivity was seen in the central nervous system. Exposure of late gestation mice showed a transplacental passage of radioactivity, and (14)C-labeling was primarily noted in the liver, brown fat and intestine of the fetuses. /short chain length Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)/ (14)C-Labeled [1-(14)C]polychlorohexadecane (C16;34.1% Cl, CP-ML) was given to C57Bl mice either by gavage (females) or intravenously (both sexes) at a radioactivity level of 370 kBq/animal (10 uCi) (corresponding to 0.44 umol of the Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)). No difference in the distribution patterns was found between the oral and intravenous administration routes. After analysis by autoradiography a high level of radioactivity was found in tissues with a high cell turnover rate and/or high metabolic activity, and lower levels could be seen in the white fat depots. High levels of radioactivity were observed in the liver, kidneys, spleen, bone marrow, brown fat, intestinal mucosa, pancreas, salivary gland and the Harderian gland 24 hr after intravenous injection. After 12 days high levels of radioactivity were seen in the adrenal cortex, abdominal fat and in the bile. Later after injection (30 days), prominent radiolabeling of the brain was found which was as high as in the liver. The Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) was also administered intravenously to pregnant mice, and uptake of radioactivity in the fetuses was observed. When the mice were administered on day 10 of pregnancy no tissue-specific localization was found, but after administration in late pregnancy (day 17) the distribution pattern after 6 hr was similar to that of adult mice when examined 24 hr after administration. /Intermediate chain length Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)/ /It was/ demonstrated that inducers and inhibitors of cytochrome P-450 (CYP) affect the rate of degradation of (14)C-labeled polychlorinated dodecanes (C12) containing 68.5% (CP-SH), 55.9% (CP-SH) and 17.4% Cl (CP-SL) to (14)CO2 in exposed C57Bl mice. Pretreatment with the inhibitor piperonyl butoxide decreased the amount of (14)CO2 formed, and the decrease was more pronounced with increasing degree of chlorination. The inhibitor metyrapone decreased the exhalation of (14)CO2 but was only investigated in mice exposed to C12;68.5% Cl. The cytochrome P-450 (CYP2B1; CYP2B2) inducer, phenobarbital, moderately increased the rate of (14)CO2 formation from Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) with 68% Cl, whereas the P-448 (CYP1A1; CYP1A2) inducer, 3-methylcholanthrene, did not affect the degradation rate, indicating a cytochrome P-450-dependent metabolism of chlorinated dodecanes yielding (14)CO2. /Short chain length Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)/ CHEMICAL PROFILE: Chlorinate paraffins: Major uses: Metal working fluids and lubricants, 50 percent; plastics additives, 20 percent; rubber, 12 percent; coatings, 9 percent; caulks, sealants and adhesives, 6 percent; miscellaneous, 3 percent. Medium-Chain Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s represent the largest production and use category in North America (46 percent). Long-Chain Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s are second (33 percent) and, Short-Chain Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s account for the rest (21 percent). "Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s" is the collective name given to industrial products prepared be chlorination of straight-chain paraffins or wax fractions. The carbon length of commercial products is usually between C10 - C30 and the chlorine content between 20-70 weight%. ... They are complex mixtures of many molecular species differing in the lengths of their carbon chains and in the number and relative positions of chlorine atoms present on each carbon chain. Evaluation: There is sufficient evidence for the carcinogenicity of a commercial Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) product of average carbon-chain length C12 and average degree of chlorination 60% in experimental animals. There is limited evidence for the carcinogenicity of a commercial Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin) product of average carbon-chain length C23 and average degree of chlorination 43% in experimental animals. No data were available from studies in humans on the carcinogenicity of Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s. Overall evaluation: Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s of average carbon-chain length C12 and average degree of chlorination approximately 60% are possibly carcinogenic to humans (Group 2B). /LABORATORY ANIMALS: Acute Exposure/ The eye irritation potential of three different Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s, C10-13;65% Cl(CP-SH), which contained either 2.5 or 2% of two different additives or 0.7% of an epoxy stabilizer, was tested in two studies. Either 0.1 mL or "one drop" of the chloroparaffin was instilled into one conjunctival sac of groups of three rabbits. Similar results were reported for all three formulations: practically no initial pain (2 on a 6-point scale) was noted. Slight irritation (3 on a 8-point scale), shown by redness and chemosis (only noted in the formulation containing the epoxy stabilizer) of the conjunctiva with some discharge, lasted for 24 hr. One drop of 52% or 40% Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s, containing unspecified additives or 1% epoxy stabilizer, was also tested. With the 52% Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin), slight immediate irritation was followed by slight redness of the conjunctiva which lasted for 24 hr. With the 40% Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin), mild congestion was noted at 1 hr but no effects were seen at 24 hr. /Short chain length Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)/ Toxicology and carcinogenesis studies of Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s (C23, 43% chlorine) ... were conducted by administering the chemical in corn oil by gavage to groups of 50 F344/N rats and 50 B6C3F1 mice of each sex, 5 days per week for 103 wk. Additional groups of 10 rats per sex and dose were examined at 6 and at 12 months. Male rats received doses of 0, 1,875, or 3,750 mg/kg body weight; female rats were given 0, 100, 300, or 900 mg/kg. Male and female mice received 0, 2,500, or 5,000 mg/kg. Doses selected for the 2 yr studies were based on the results from 13 wk studies in which rats of each sex received 0 to 3,750 mg/kg, and mice of each sex, 0 to 7,500 mg/kg. Under the conditions of these 2 yr gavage studies, there was no evidence of carcinogenicity of Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s (C23, 43% chlorine) for male F344/N rats given 1,875 or 3,750 mg/kg per day. There was equivocal evidence of carcinogenicity of Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s (C23, 43% chlorine) for female F344/N rats as shown by an increased incidence of adrenal gland medullary pheochromocytomas. There was clear evidence of carcinogenicity of Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s (C23, 43% chlorine) for male B6C3F1 mice as shown by an increase in the incidence of malignant lymphomas. There was equivocal evidence of carcinogenicity of Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s (C23, 43% chlorine) for female B6C3F1 mice as shown by a marginal increase in the incidence of hepatocellular neoplasms. Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s' production and use as extreme pressure lubricants, fire retardant additives and sealants for C10-C13 (50-70% chlorinated), secondary PVC plasticizers for C14-C17 (45-60% chlorinated) and paints, extreme pressure lubricants and fire retardant additives for C20-C30 (40-70% chlorinated) may result in their release to the environment through various waste streams. If released to air, a vapor pressure on the order of 2X10-5 mm Hg indicates Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s will exist in both the vapor and particulate phases. Vapor-phase Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s will be degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals. Particulate-phase Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s will be removed from the atmosphere by wet or dry deposition. Sunlight appears to catalyze the decomposition of Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s with the evolution of hydrogen chloride. If released to soil, Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s are expected to have no mobility based upon estimated Koc values of 5900 to 2.2X10+8. Volatilization from moist soil surfaces is not expected to be an important fate process based upon the low vapor pressure of 2X10-5 mm Hg and extremely low water solubility. Based on limited biodegradation studies, Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s may biodegrade in soil and water. If released into water, Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s are expected to adsorb to suspended solids and sediment based upon the estimated Koc values. Volatilization from water surfaces is not expected to be an important fate process based upon the vapor pressure and water solubility. A log BCF of 1.69, and BCF values of 7800 in fresh water fish suggest bioconcentration in aquatic organisms is moderate to very high. Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s are not expected to undergo hydrolysis in the environment due to the lack of functional groups that hydrolyze under environmental conditions. Occupational exposure to Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s may occur through dermal contact with this compound at workplaces where Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s are produced or used. Use and monitoring data indicate that the general population may be exposed to Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s via ingestion of food and dermal contact with products containing Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s. (SRC) TERRESTRIAL FATE: Based on a classification scheme(1), estimated Koc values of 5900 to 2.2X10+8(SRC), determined from log Kows of 4.4 to 12.8(2) and a regression-derived equation(3), indicate that Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s are expected to be immobile in soil(SRC). Volatilization of Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s from moist soil surfaces is not expected to be an important fate process(SRC) based upon the low vapor pressure of 2X10-5 mm Hg and extremely low water solubility(4). Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s are not expected to volatilize from dry soil surfaces(SRC) based upon the vapor pressure(4). Based on limited biodegradation studies Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s may biodegrade in soil(5-6). NIOSH (NOES Survey 1981-1983) has statistically estimated that 573,193 workers (38,354 of these were female) were potentially exposed to Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s in the US(1). Occupational exposure to Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s may occur through dermal contact with this compound at workplaces where Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s are produced or used. Use data indicate that the general population may be exposed to Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s via ingestion of food, and dermal contact with products containing Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s(SRC). Uses of Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s : Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s are used as secondary plasticizers for polyvinyl chloride (PVC) and can partially replace primary plasticizers such as phthalates and phosphate esters. The use of Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s has the advantage in comparison with conventional plasticizers of both increasing the flexibility of the material as well as increasing its flame retardancy and low-temperature strength. Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s are also used as extreme pressure additives in metal- machining fluids or as metal working lubricants or cutting oils because of their viscous nature, compatibility with oils, and property of releasing hydrochloric acid at elevated temperatures. The hydrochloric acid reacts with metal surfaces to form a thin but strong solid film of metal chloride lubricant. They are added to paints, coatings and sealants to improve resistance to water and chemicals, which is most suitable when they are used in marine paints, as coatings for industrial flooring, vessels and swimming pools (e.g., rubber and chlorinated rubber coatings), and as road marking paints. The flame-retarding properties of highly Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s make them important as additives in plastics, fabrics, paints and coatings. The most effective fire-retardant action is obtained with a high degree of chlorination. By the late 1970s approximately 50% of Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s in the USA was used as extreme pressure lubricant additives in the metal-working industry; 25% was used in plastics and fire-retardant and water- repellant fabric treatments, and the rest was used in paint, rubber, caulks and sealants In the United Kingdom, 65-70% of the consumed Chlorinated Paraffin (CHLORINATED PARAFFIN, CP, Klorlu Parafin)s is used as a secondary plasticizer in PVC, about
CHLORINATED PARAFFIN 70 %
Synonyms: chlorine(iv)oxide;chlorine(iv)oxide[qr];chlorineoxide(clo2);chlorineoxide[qr];chlorineperoxide;chlorineperoxide[qr];chloroperoxyl;Alcide CAS: 10049-04-4
CHLORINE DIOXIDE %3
CHLORINE DIOXIDE %3 Chlorine dioxide %3 the free encyclopedia Jump to navigationJump to search Not to be confused with the chlorite ion or hydroxychloroquine. Chlorine dioxide %3 Structural formula of Chlorine dioxide %3 with assorted dimensions Spacefill model of Chlorine dioxide %3 Chlorine dioxide %3 gas and solution.jpg Names IUPAC name Chlorine dioxide %3 Other names Chlorine(IV) oxide Identifiers CAS Number 10049-04-4 ☑ 3D model (JSmol) Interactive image Interactive image ChEBI CHEBI:29415 ☑ ChemSpider 23251 ☑ ECHA InfoCard 100.030.135 Edit this at Wikidata EC Number 233-162-8 E number E926 (glazing agents, ...) Gmelin Reference 1265 MeSH Chlorine+dioxide PubChem CID 24870 RTECS number FO3000000 UNII 8061YMS4RM ☑ UN number 9191 CompTox Dashboard (EPA) DTXSID5023958 Edit this at Wikidata InChI[show] SMILES[show] Properties Chemical formula ClO2 Molar mass 67.45 g·mol−1 Appearance Yellow to reddish gas Odor Acrid Density 2.757 g dm−3[1] Melting point −59 °C (−74 °F; 214 K) Boiling point 11 °C (52 °F; 284 K) Solubility in water 8 g/L (at 20 °C) Solubility soluble in alkaline and sulfuric acid solutions Vapor pressure >1 atm[2] Henry's law constant (kH) 4.01×10−2 atm m3 mol−1 Acidity (pKa) 3.0(5) Thermochemistry Std molar entropy (So298) 257.22 J K−1 mol−1 Std enthalpy of formation (ΔfH⦵298) 104.60 kJ/mol Hazards Main hazards Acute toxicity Safety data sheet Safety Data Sheet Archive. GHS pictograms GHS03: OxidizingGHS05: CorrosiveGHS06: Toxic GHS Signal word Danger GHS hazard statements H271, H314, H330 GHS precautionary statements P210, P220, P280, P283, P260, P264, P271, P284, P301, P330, P331, P311, P306, P360, P304, P340, P305, P351, P338, P371+380+375, P405, P403+233, P501 NFPA 704 (fire diamond) NFPA 704 four-colored diamond 034OX Lethal dose or concentration (LD, LC): LD50 (median dose) 94 mg/kg (oral, rat)[3] LCLo (lowest published) 260 ppm (rat, 2 hr)[4] NIOSH (US health exposure limits): PEL (Permissible) TWA 0.1 ppm (0.3 mg/m3)[2] REL (Recommended) TWA 0.1 ppm (0.3 mg/m3) ST 0.3 ppm (0.9 mg/m3)[2] IDLH (Immediate danger) 5 ppm[2] Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). ☑ verify (what is ☑☒ ?) Infobox references Chlorine dioxide %3 is a chemical compound with the formula ClO2 that exists as yellowish-green gas above 11 °C, a reddish-brown liquid between 11 °C and −59 °C, and as bright orange crystals below −59 °C. It is an oxidizing agent, able to transfer oxygen to a variety of substrates, while gaining one or more electrons via oxidation-reduction (redox). It does not hydrolyze when it enters water, and is usually handled as a dissolved gas in solution in water. Potential hazards with Chlorine dioxide %3 include health concerns, explosiveness and fire ignition.[5] It is commonly used as a bleach. Chlorine dioxide %3 was discovered in 1811 and has been widely used for bleaching purposes in the paper industry, and for treatment of drinking water. More recent developments have extended its application into food processing, disinfection of premises and vehicles, mold eradication, air disinfection and odor control, treatment of swimming pools, dental applications, and wound cleansing. The compound has been fraudulently marketed as an ingestible cure for a wide range of diseases, including childhood autism[6] and COVID-19.[7][8][9] Children who have been given enemas of Chlorine dioxide %3 as a supposed cure for childhood autism have suffered life-threatening ailments.[6] The U.S. Food and Drug Administration (FDA) has stated that ingestion or other internal use of Chlorine dioxide %3 (other than perhaps oral rinsing under dentist supervision) has no health benefits and it should not be used internally for any reason.[10][11] Contents 1 Structure and bonding 2 Preparation 2.1 Oxidation of chlorite 2.2 Reduction of chlorate 2.3 Other processes 3 Handling properties 4 Uses 4.1 Bleaching 4.2 Water treatment 4.3 Use in public crises 4.4 Other disinfection uses 4.5 Pseudomedicine 4.6 Other uses 5 Safety issues in water and supplements 6 References 7 External links Structure and bonding Comparison of three-electron bond to the conventional covalent bond The two resonance structures Chlorine dioxide %3 is a neutral chlorine compound. It is very different from elemental chlorine, both in its chemical structure and in its behavior.[12] One of the most important qualities of Chlorine dioxide %3 is its high water solubility, especially in cold water. Chlorine dioxide %3 does not hydrolyze when it enters water; it remains a dissolved gas in solution. Chlorine dioxide %3 is approximately 10 times more soluble in water than chlorine.[12] The molecule ClO2 has an odd number of valence electrons, and therefore, it is a paramagnetic radical. Its electronic structure has long baffled chemists because none of the possible Lewis structures is very satisfactory. In 1933, L. O. Brockway proposed a structure that involved a three-electron bond.[13] Chemist Linus Pauling further developed this idea and arrived at two resonance structures involving a double bond on one side and a single bond plus three-electron bond on the other.[14] In Pauling's view the latter combination should represent a bond that is slightly weaker than the double bond. In molecular orbital theory this idea is commonplace if the third electron is placed in an anti-bonding orbital. Later work has confirmed that the highest occupied molecular orbital is indeed an incompletely-filled antibonding orbital.[15] Preparation Chlorine dioxide %3 is a compound that can decompose extremely violently when separated from diluting substances. As a result, preparation methods that involve producing solutions of it without going through a gas-phase stage are often preferred. Arranging handling in a safe manner is essential. Oxidation of chlorite In the laboratory, ClO2 can be prepared by oxidation of sodium chlorite with chlorine:[16] 2 NaClO2 + Cl2 → 2 ClO2 + 2 NaCl Traditionally, Chlorine dioxide %3 for disinfection applications has been made from sodium chlorite or the sodium chlorite–hypochlorite method: 2 NaClO2 + 2 HCl + NaOCl → 2 ClO2 + 3 NaCl + H2O or the sodium chlorite–hydrochloric acid method: 5 NaClO2 + 4 HCl → 5 NaCl + 4 ClO2 + 2 H2O or the chlorite–sulfuric acid method: 4 ClO− 2 + 2 H2SO4 → 2 ClO2 + HClO3 + 2 SO2− 4 + H2O + HCl All three methods can produce Chlorine dioxide %3 with high chlorite conversion yield. Unlike the other processes, the chlorite–sulfuric acid method produces completely chlorine-free Chlorine dioxide %3, although it suffers from the requirement of 25% more chlorite to produce an equivalent amount of Chlorine dioxide %3. Alternatively, hydrogen peroxide may be efficiently used in small-scale applications.[12] Reduction of chlorate In the laboratory, Chlorine dioxide %3 can also be prepared by reaction of potassium chlorate with oxalic acid: 2 KClO3 + 2 H2C2O4 → K2C2O4 + 2 ClO2 + 2 CO2 + 2 H2O 2 KClO3 + H2C2O4 + 2 H2SO4 → 2 KHSO4 + 2 ClO2 + 2 CO2 + 2 H2O Over 95% of the Chlorine dioxide %3 produced in the world today is made by reduction of sodium chlorate, for use in pulp bleaching. It is produced with high efficiency in a strong acid solution with a suitable reducing agent such as methanol, hydrogen peroxide, hydrochloric acid or sulfur dioxide.[12] Modern technologies are based on methanol or hydrogen peroxide, as these chemistries allow the best economy and do not co-produce elemental chlorine. The overall reaction can be written as:[17] chlorate + acid + reducing agent → Chlorine dioxide %3 + by-products As a typical example, the reaction of sodium chlorate with hydrochloric acid in a single reactor is believed to proceed through the following pathway: which gives the overall reaction The commercially more important production route uses methanol as the reducing agent and sulfuric acid for the acidity. Two advantages of not using the chloride-based processes are that there is no formation of elemental chlorine, and that sodium sulfate, a valuable chemical for the pulp mill, is a side-product. These methanol-based processes provide high efficiency and can be made very safe.[12] The variant process using chlorate, hydrogen peroxide and sulfuric acid has been increasingly used since 1999 for water treatment and other small-scale disinfection applications, since it produce a chlorine-free product at high efficiency. Other processes Very pure Chlorine dioxide %3 can also be produced by electrolysis of a chlorite solution:[18] 2 NaClO2 + 2 H2O → 2 ClO2 + 2 NaOH + H2 High-purity Chlorine dioxide %3 gas (7.7% in air or nitrogen) can be produced by the gas–solid method, which reacts dilute chlorine gas with solid sodium chlorite:[18] 2 NaClO2 + Cl2 → 2 ClO2 + 2 NaCl Handling properties At partial pressures above 10 kPa[12] (or gas-phase concentrations greater than 10% volume in air at STP), ClO2 may explosively decompose into chlorine and oxygen. The decomposition can be initiated by light, hot spots, chemical reaction, or pressure shock. Thus, Chlorine dioxide %3 gas is never handled in concentrated form, but is almost always handled as a dissolved gas in water in a concentration range of 0.5 to 10 grams per liter. Its solubility increases at lower temperatures, thus it is common to use chilled water (5 °C) when storing at concentrations above 3 grams per liter. In many countries, such as the United States, Chlorine dioxide %3 gas may not be transported at any concentration and is almost always produced at the application site using a Chlorine dioxide %3 generator.[12] In some countries,[which?] Chlorine dioxide %3 solutions below 3 grams per liter in concentration may be transported by land, however, they are relatively unstable and deteriorate quickly. Uses Chlorine dioxide %3 is used for bleaching of wood pulp and for the disinfection (called chlorination) of municipal drinking water.[19][20]:4–1[21] As a disinfectant, it is effective even at low concentrations because of its unique qualities.[12][20] Bleaching Chlorine dioxide %3 is sometimes used for bleaching of wood pulp in combination with chlorine, but it is used alone in ECF (elemental chlorine-free) bleaching sequences. It is used at moderately acidic pH (3.5 to 6). The use of Chlorine dioxide %3 minimizes the amount of organochlorine compounds produced.[22] Chlorine dioxide %3 (ECF technology) currently is the most important bleaching method worldwide. About 95% of all bleached kraft pulp is made using Chlorine dioxide %3 in ECF bleaching sequences.[23] Chlorine dioxide %3 has been used to bleach flour.[24] Water treatment Further information: Water chlorination and Portable water purification § Chlorine dioxide %3 The Niagara Falls, New York, water treatment plant first used Chlorine dioxide %3 for drinking water treatment in 1944 for destroying "taste and odor producing phenolic compounds".[20]:4–17[21] Chlorine dioxide %3 was introduced as a drinking water disinfectant on a large scale in 1956, when Brussels, Belgium, changed from chlorine to Chlorine dioxide %3.[21] Its most common use in water treatment is as a pre-oxidant prior to chlorination of drinking water to destroy natural water impurities that would otherwise produce trihalomethanes on exposure to free chlorine.[25][26][27] Trihalomethanes are suspect carcinogenic disinfection by-products[28] associated with chlorination of naturally occurring organics in the raw water.[27] Chlorine dioxide %3 is also superior to chlorine when operating above pH 7,[20]:4–33 in the presence of ammonia and amines[citation needed] and for the control of biofilms in water distribution systems.[27] Chlorine dioxide %3 is used in many industrial water treatment applications as a biocide including cooling towers, process water, and food processing.[29] Chlorine dioxide %3 is less corrosive than chlorine and superior for the control of Legionella bacteria.[21][30] Chlorine dioxide %3 is superior to some other secondary water disinfection methods in that Chlorine dioxide %3 is an EPA-registered biocide, is not negatively impacted by pH, does not lose efficacy over time (the bacteria will not grow resistant to it), and is not negatively impacted by silica and phosphates, which are commonly used potable water corrosion inhibitors. It is more effective as a disinfectant than chlorine in most circumstances against waterborne pathogenic agents such as viruses,[31] bacteria and protozoa – including the cysts of Giardia and the oocysts of Cryptosporidium.[20]:4–20–4–21 The use of Chlorine dioxide %3 in water treatment leads to the formation of the by-product chlorite, which is currently limited to a maximum of 1 part per million in drinking water in the USA.[20]:4–33 This EPA standard limits the use of Chlorine dioxide %3 in the US to relatively high-quality water because this minimizes chlorite concentration, or water that is to be treated with iron-based coagulants (iron can reduce chlorite to chloride).[citation needed] Use in public crises Chlorine dioxide %3 has many applications as an oxidizer or disinfectant.[12] Chlorine dioxide %3 can be used for air disinfection[32] and was the principal agent used in the decontamination of buildings in the United States after the 2001 anthrax attacks.[33] After the disaster of Hurricane Katrina in New Orleans, Louisiana, and the surrounding Gulf Coast, Chlorine dioxide %3 was used to eradicate dangerous mold from houses inundated by the flood water.[34] In addressing the COVID-19 pandemic, the U.S. Environmental Protection Agency has posted a list of many disinfectants that meet its criteria for use in environmental measures against the causative coronavirus.[35][36] Some are based on sodium chlorite that is activated into Chlorine dioxide %3, though differing formulations are used in each product. Many other products on the EPA list contain sodium hypochlorite, which is similar in name but should not be confused with sodium chlorite because they have very different modes of chemical action. Other disinfection uses Chlorine dioxide %3 may be used as a fumigant treatment to "sanitize" fruits such as blueberries, raspberries, and strawberries that develop molds and yeast.[37] Chlorine dioxide %3 may be used to disinfect poultry by spraying or immersing it after slaughtering.[38] Chlorine dioxide %3 may be used for the disinfection of endoscopes, such as under the trade name Tristel.[39] It is also available in a trio consisting of a preceding pre-clean with surfactant and a succeeding rinse with deionized water and a low-level antioxidant.[40] Chlorine dioxide %3 may be used for control of zebra and quagga mussels in water intakes.[20]:4–34 Chlorine dioxide %3 was shown to be effective in bedbug eradication.[41] Pseudomedicine See also: Miracle Mineral Supplement Chlorine dioxide %3 is fraudulently marketed as a magic cure for a range of diseases from brain cancer to AIDS. Enemas of Chlorine dioxide %3 are a supposed cure for childhood autism, resulting in complaints to the FDA reporting life-threatening reactions,[42] and even death.[43] Chlorine dioxide %3 is relabelled to a variety of brand names including, but not limited to MMS, Miracle Mineral Solution and CD protocol.[44] There is no scientific basis for Chlorine dioxide %3's medical properties and FDA has warned against its usage.[45][46] Other uses Chlorine dioxide %3 is used as an oxidant for destroying phenols in wastewater streams and for odor control in the air scrubbers of animal byproduct (rendering) plants.[20]:4–34 It is also available for use as a deodorant for cars and boats, in Chlorine dioxide %3-generating packages that are activated by water and left in the boat or car overnight. Safety issues in water and supplements Chlorine dioxide %3 is toxic, hence limits on exposure to it are needed to ensure its safe use. The United States Environmental Protection Agency has set a maximum level of 0.8 mg/L for Chlorine dioxide %3 in drinking water.[47] The Occupational Safety and Health Administration (OSHA), an agency of the United States Department of Labor, has set an 8-hour permissible exposure limit of 0.1 ppm in air (0.3 mg/m3) for people working with Chlorine dioxide %3.[48] On July 30, 2010, and again on October 1, 2010, the United States Food and Drug Administration warned against the use of the product "Miracle Mineral Supplement", or "MMS", which when made up according to instructions produces Chlorine dioxide %3. MMS has been marketed as a treatment for a variety of conditions, including HIV, cancer, autism, and acne. The FDA warnings informed consumers that MMS can cause serious harm to health and stated that it has received numerous reports of nausea, diarrhea, severe vomiting, and life-threatening low blood pressure caused by dehydration.[49][50] This warning was repeated for a third time on 12 August 2019, and a fourth on April 8, 2020, stating that ingesting MMS is the same as drinking bleach, and urging consumers to not use them or give these products to their children for any reason.[46] Chlorine dioxide %3 Chlorine dioxide %3 (ClO2) is a chemical compound consisting of one chlorine atom and two oxygen atoms. It is a reddish to yellowish-green gas at room temperature that dissolves in water. It is used for a variety of antimicrobial uses, including the disinfection of drinking water. Chlorine dioxide %3 gas is usually produced onsite from sodium chlorate or sodium chlorite. Safety Information Answering Questions Uses & Benefits Powerful Disinfection in Water Treatment Chlorine dioxide %3 is a disinfectant. When added to drinking water, it helps destroy bacteria, viruses and some types of parasites that can make people sick, such as Cryptosporidium parvum and Giardia lamblia. The Environmental Protection Agency (EPA) regulates the maximum concentration of Chlorine dioxide %3 in drinking water to be no greater than 0.8 parts per million (ppm). Industrial/Manufacturing Uses Chlorine dioxide %3 chemistry is used in a wide variety of industrial, oil and gas, food and municipal applications: Food and Beverage Production Chlorine dioxide %3 can be used as an antimicrobial agent in water used in poultry processing and to wash fruits and vegetables. Paper Processing Chlorine dioxide %3 is used to chemically process wood pulp for paper manufacturing. Medical Applications In hospitals and other healthcare environments, Chlorine dioxide %3 gas helps to sterilize medical and laboratory equipment, surfaces, rooms and tools. Researchers have found that at appropriate concentrations, Chlorine dioxide %3 is both safe and effective at helping to eliminate Legionella bacteria in hospital environments. Legionella pneumophila bacteria can cause Legionnaires’ disease, a potentially deadly type of pneumonia. Chlorine dioxide %3 is not a cure or treatment for medical ailments, including but not limited to autism, HIV, malaria, hepatitis viruses, influenza, common colds, and cancer. Claims that the ingestion of Chlorine dioxide %3, often advertised as “Miracle Mineral Solution” or MMS, will cure these or other ailments are false. The U.S. Food and Drug Administration (FDA) advises MMS should not be consumed. Uses & BenefitsSafety Information Back to Top Safety Information Chlorine dioxide %3 is used to disinfect drinking water around the world. According to U.S. Centers for Disease Control and Prevention, Chlorine dioxide %3 is added to drinking water to protect people from harmful bacteria and other microorganisms. EPA recognizes Chlorine dioxide %3 use as a drinking water disinfectant, and it is included in the World Health Organization’s (WHO) Guidelines for Drinking-water Quality. In its pure form, Chlorine dioxide %3 is a hazardous gas but most people are “not likely” to breathe air containing dangerous levels of Chlorine dioxide %3 as it rapidly breaks down in air to chlorine gas and oxygen. For workers who use Chlorine dioxide %3, the U.S. Occupational Safety and Hazard Administration (OSHA) regulates the level of Chlorine dioxide %3 in workplace air for safety. OSHA has set a Permissible Exposure Limit (PEL) for Chlorine dioxide %3 at 0.1 parts per million (ppm), or 0.3 milligrams (mg) per cubic meters (m3) for workers using Chlorine dioxide %3 for general industrial purposes. OSHA also has a PEL for Chlorine dioxide %3 for the construction industry. Chlorine dioxide %3 is always made at the location where it is used. Uses & BenefitsSafety Information Back to Top Answering Questions How is Chlorine dioxide %3 used in water treatment? According to EPA, Chlorine dioxide %3 is used “in public water-treatment facilities, to make water safe for drinking.” When Chlorine dioxide %3 is added to drinking water, it helps destroy bacteria, viruses and some types of parasites that can make people sick, such as Cryptosporidium parvum and Giardia lamblia. Is Chlorine dioxide %3 a miracle cure for numerous diseases and illnesses? No. Claims that Chlorine dioxide %3 is a treatment or cure for medical ailments such as autism, HIV, malaria, hepatitis viruses, influenza, common colds, cancer, or other diseases/ailments are not backed by science. Consumption of Chlorine dioxide %3 solutions, such as MMS, can cause nausea, vomiting, diarrhea, and severe dehydration. These products should not be consumed or given to someone to consume. The sale of these products as miracle cures is dangerous and has resulted in criminal convictions. Does Chlorine dioxide %3 remove odor? In water, Chlorine dioxide %3 is used to remove unpleasant tastes and odors, as well as to kill algae and bacteria that produce some bad tastes and odors. It is also used in some personal hygiene products. For example, Chlorine dioxide %3 can be used in mouthwashes and dentistry products as an oxidizing biocide compound to treat bad breath. Disinfectants Chlorine dioxide %3 discovery characteristics storage production applications drinking water swimming pools disinfectant disinfection health effects advantages and disadvantages legislation Chlorine dioxide %3 in bags Chlorine dioxide %3 Chlorine dioxide %3 is mainly used as a bleach. As a disinfectant it is effective even at low concentrations, because of its unique qualities. Figure 1: sir Humphrey Day discovered Chlorine dioxide %3 in 1814. When was Chlorine dioxide %3 discovered? Chlorine dioxide %3 was discovered in 1814 by Sir Humphrey Davy. He produced the gas by pouring sulphuric acid (H2SO4) on potassium chlorate (KClO3). Than he replaced sulphuric acid by hypochlorous acid (HOCl). In the last few years this reaction has also been used to produce large quantities of Chlorine dioxide %3. Sodium chlorate (NaClO3) was used instead of potassium chlorate. 2NaClO3 + 4HCl ® 2ClO2 + Cl2 + 2NaCl + 2H2O What are the characteristics of Chlorine dioxide %3 ? Chlorine dioxide %3 (ClO2) is a synthetic, green-yellowish gas with a chlorine-like, irritating odor. Chlorine dioxide %3 is a neutral chlorine compound. Chlorine dioxide %3 is very different from elementary chlorine, both in its chemical structure as in its behavior. Chlorine dioxide %3 is a small, volatile and very strong molecule. In diluted, watery solutions Chlorine dioxide %3 is a free radical. At high concentrations it reacts strongly with reducing agents. Chlorine dioxide %3 is an unstable gas that dissociates into chlorine gas (Cl2), oxygen gas (O2) and heat. When Chlorine dioxide %3 is photo-oxidized by sunlight, it falls apart. The end-products of Chlorine dioxide %3 reactions are chloride (Cl-), chlorite (ClO-) and chlorate (ClO3-). At –59°C, solid Chlorine dioxide %3 becomes a reddish liquid. At 11°C Chlorine dioxide %3 turns into gas. Chlorine dioxide %3 is 2,4 times denser than air. As a liquid Chlorine dioxide %3 has a bigger density than water. Can Chlorine dioxide %3 be dissolved in water? One of the most important qualities of Chlorine dioxide %3 is its high water solubility, especially in cold water. Chlorine dioxide %3 does not hydrolyze when it enters water; it remains a dissolved gas in solution. Chlorine dioxide %3 is approximately 10 times more soluble in water than chlorine. Chlorine dioxide %3 can be removed by aeration or carbon dioxide. Table 1: the solubility of Chlorine dioxide %3 in water How can Chlorine dioxide %3 be stored? The best way to store Chlorine dioxide %3 is as a liquid at 4 ºC. At this state it is fairly stable. Chlorine dioxide %3 cannot be stored for too long, because it slowly dissociates into chlorine and oxygen. It is rarely stored as a gas, because it is explosive under pressure. When concentrations are higher than 10% Chlorine dioxide %3 in air, there is an explosion hazard. In a watery solution, Chlorine dioxide %3 remain stable and soluble. Watery solutions containing approximately 1% ClO2 (10 g/L) can safely be stored, under the condition that they are protected from light and heat interference. Chlorine dioxide %3 is rarely transported, because of its explosiveness and instability. It is usually manufactured on site. How is Chlorine dioxide %3 produced? Chlorine dioxide %3 is explosive under pressure. It is difficult to transport and is usually manufactured on site. Chlorine dioxide %3 is usually produced as a watery solution or gas. It is produced in acidic solutions of sodium chlorite (NaClO2), or sodium chlorate (NaClO3). For large installations sodium chlorite, chlorine gas (Cl2), sodium hydrogen chlorite (NaHClO2) and sulphuric or hydrogen acid are used for the production of Chlorine dioxide %3 on site. To produce Chlorine dioxide %3 gas, hydrochloric acid (HCl) or chlorine is brought together with sodium chlorite. The to main reactions are: 2NaClO2 + Cl2 ® 2ClO2 + 2NaCl (Acidified hypochlorite can also be used as an alternative source for chlorine.) And: 5 NaClO2 + 4HCl ® 4 ClO2 + 5NaCl + 2H2O (One disadvantage of this method is that it is rather hazardous.) An alternative is: 2 NaClO2 + Na2S2O8 ® 2ClO2 + 2Na2SO4 Chlorine dioxide %3 can also be produced by the reaction of sodium hypochlorite with hydrochloric acid: HCl + NaOCl + 2NaClO2 ® 2ClO2 + 2NaCl + NaOH The amount Chlorine dioxide %3 that is produced varies between 0 and 50 g/L. What are the applications of Chlorine dioxide %3? Chlorine dioxide %3 has many applications. It is used in the electronics industry to clean circuit boards, in the oil industry to treat sulfides and to bleach textile and candles. In World War II, chlorine became scarce and Chlorine dioxide %3 was used as a bleach. Nowadays Chlorine dioxide %3 is used most often to bleach paper. It produces a clearer and stronger fiber than chlorine does. Chlorine dioxide %3 has the advantage that it produces less harmful byproducts than chlorine. Chlorine dioxide %3 gas is used to sterilize medical and laboratory equipment, surfaces, rooms and tools. Chlorine dioxide %3 can be used as oxidizer or disinfectant. It is a very strong oxidizer and it effectively kills pathogenic microorganisms such as fungi, bacteria and viruses. It also prevents and removes bio film. As a disinfectant and pesticide it is mainly used in liquid form. Chlorine dioxide %3 can also be used against anthrax, because it is effective against spore-forming bacteria. Chlorine dioxide %3 as an oxidizer As an oxidizer Chlorine dioxide %3 is very selective. It has this ability due to unique one-electron exchange mechanisms. Chlorine dioxide %3 attacks the electron-rich centers of organic molecules. One electron is transferred and Chlorine dioxide %3 is reduced to chlorite (ClO2- ). Figure 2: Chlorine dioxide %3 is more selective as an oxidizer than chlorine. While dosing the same concentrations, the residual concentration of Chlorine dioxide %3 is much higher with heavy pollution than the residual concentration of chlorine. By comparing the oxidation strength and oxidation capacity of different disinfectants, one can conclude that Chlorine dioxide %3 is effective at low concentrations. Chlorine dioxide %3 is not as reactive as ozone or chlorine and it only reacts with sulphuric substances, amines and some other reactive organic substances. In comparison to chlorine and ozone, less Chlorine dioxide %3 is required to obtain an active residual disinfectant. It can also be used when a large amount of organic matter is present. The oxidation strength describes how strongly an oxidizer reacts with an oxidizable substance. Ozone has the highest oxidation strength and reacts with every substance that can be oxidized. Chlorine dioxide %3 is weak, it has a lower potential than hypochlorous acid or hypobromous acid. The oxidation capacity shows how many electrons are transferred at an oxidation or reduction reaction. The chlorine atom in Chlorine dioxide %3 has an oxidation number of +4. For this reason Chlorine dioxide %3 accepts 5 electrons when it is reduced to chloride. When we look at the molecular weight, Chlorine dioxide %3 contains 263 % 'available chlorine'; this is more than 2,5 times the oxidation capacity of chlorine.
Chlorine Dioxide
SYNONYMS Dichlorine; Molecular Chlorine; Chlorinated Water; Bertholite; CAS NO 7782-50-5
Chlorine Gas
CHLOROACETAMIDE, N° CAS : 79-07-2, Nom INCI : CHLOROACETAMIDE, Nom chimique : 2-Chloroacetamide, N° EINECS/ELINCS : 201-174-2, Classification : Règlementé, Conservateur La concentration maximale autorisée dans les préparations cosmétiques prêtes à l'emploi est de 0,3 %. Ses fonctions (INCI): Conservateur : Inhibe le développement des micro-organismes dans les produits cosmétiques.
Chloroacetamide
CHLOROACETIC ACID, N° CAS : 79-11-8, Nom INCI : CHLOROACETIC ACID, N° EINECS/ELINCS : 201-178-4, Kératolytique : Décolle et élimine les cellules mortes de la couche cornée de l'apiderme
CHLOROACETIC ACID
5-Chloro-2-methyl-4-isothiazolin-3-one; Methylchloroisothiazolinone; 5-Chloro-2-methyl-3(2H)-isothiazolone; Chloromethylisothiazolinone; 5-chloro-N-methylisothiazolone; Kathon IXE; n-methyl-5-chloroisothiazolone CAS NO:26172-55-4
Chloromethylisothiazolinone
5-Chloro-2-methyl-4-isothiazolin-3-one; Kathon CG; 5-Cloro-2-metil-2H-isotiazol-3-ona (Spanish); 5-Chloro2-méthyl-2H-isothiazole-3-one (French); Methylchloroisothiazolinone; 5-Chloro-2-methyl-3(2H)-isothiazolone; Other RN: 137662-59-0, 26530-03-0 (hydrochloride) CAS NO: 26172-55-4
CHLOROPHENE
Chloropicrin; Nitrotrichloromethane; Nitrochloroform; Chloorpikrine; Chloropicrine; Chlorpikrin; Cloropicrina; Trichloornitromethaan; Trichlornitromethan; Tricloro-nitro-metano CAS NO:76-06-2
Chloropicrin
CHLOROXYLENOL, N° CAS : 88-04-0 / 1321-23-9, Origine(s) : Synthétique, Nom INCI : CHLOROXYLENOL, Noms français : 2,6-DIMETHYL-4-HYDROXYCHLOROBENZENE; 2-CHLORO-5-HYDROXY-1,3-DIMETHYLBENZENE; 2-CHLORO-5-HYDROXY-M-XYLENE; 3,5-DIMETHYL-4-CHLOROPHENOL; Chloro-4 diméthyl-3,5 phénol; Chloro-4 xylénol-3,5; p-chloro-m-xylénol Noms anglais : 4-chloro-3,5-dimethylphenol; 4-chloro-3,5-xylenol. Utilisation: Germicide, agent antiseptique. Nom chimique : Phenol, 4-chloro-3,5-dimethyl-, N° EINECS/ELINCS : 201-793-8 / 215-316-6. Ses fonctions (INCI): Antimicrobien : Aide à ralentir la croissance de micro-organismes sur la peau et s'oppose au développement des microbes. Déodorant : Réduit ou masque les odeurs corporelles désagréables. Conservateur : Inhibe le développement des micro-organismes dans les produits cosmétiques.3,5-Xylenol, 4-chloro-; 4-chloro-3,5-dimethylphenol; 4-chloro-3,5-xylenol Chloro-xylenol; 3,5-dimetyl-4-klorfenol (sv); 4-chloor-3,5-dimethylfenol (nl); 4-chlor-3,5-dimethylfenol (cs); 4-chlor-3,5-dimethylphenol (da); 4-chlor-3,5-dimetilfenolis (lt); 4-Chlor-3,5-xylenol (de); 4-chloro-3,5-dimetylofenol (pl); 4-chloro-3,5-diméthylphénol (fr); 4-chlór-3,5-dimetylfenol (sk); 4-clor-3,5-dimetilfenol (ro); 4-cloro-3,5-dimetilfenol (es); 4-cloro-3,5-dimetilfenolo (it); 4-hlor-3,5-dimetilfenols (lv); 4-Kloori-3,5-dimetyylifenoli (fi); 4-klor-3,5-dimetylfenol (no); 4-klor-3,5-xylenol (no); 4-kloro-3,5-dimetil-fenol (hr); 4-kloro-3,5-dimetilfenol (sl);4-kloro-3,5-dimetüülfenool (et); 4-klór-3,5-dimetilfenol (hu); 4-χλωρο-3,5-ξυλενόλη (el); 4-хлоро-3,5-диметилфенол (bg); Phenol, 4-chloro-3,5-dimethyl-; 4-chloro-3,5-dimethyl-phenol; 4-chloro-3,5-dimethylphenol;chloroxylenol-; para chloro meta xylenol; PCMX; Phenol, 4-chloro-3,5-dimethyl; Surcide PCMX; 215-316-6 [EINECS] 4-Chlor-3,5-dimethylphenol [German] 4-Chloro-3,5-dimethylphenol 4-Chloro-3,5-diméthylphénol [French] 4-Chloro-3,5-xylenol 4-Chloro-sym-m-xylenol 88-04-0 [RN] Chloroxylenol [USP] p-Chloro-m-xylenol PCMX Phenol, 4-chloro-3,5-dimethyl- [ACD/Index Name] 1-[1-(benzenesulfonyl)-2-pyrrolyl]ethanone 2-Chloro-5-hydroxy-1,3-dimethylbenzene 2-Chloro-5-hydroxy-m-xylene 2-Chloro-m-xylenol 3, 5-Dimethyl-4-chlorophenol 3,5-Dimethy-4-Chloro phenol 3,5-dimethyl-4-chlorophenol 3,5-Xylenol, 4-chloro- 4-06-00-03152 (Beilstein Handbook Reference) [Beilstein] 4-Chloro-1-hydroxy-3,5-dimethylbenzene 4-chloro-3 5-dimethylphenol 4-Chloro-3, 5-xylenol 4-CHLORO-3,5-DIMETHYL PHENOL 4-chloro-3,5-dimethyl-phenol 4-Chloro-3,5-Dimethylphenol (en)4-Chloro-3,5-Xylenol (en) 4-chloro-3,5-dimethylphenol, ??? 98.0% 4-chloro-3,5-dimethylphenol, 98+% 4-chloro-3,5-dimethylphenol, 99% 4-chloro-3,5-dimethylphenol,99% 4-Chloro-3,5-dimethylphenol;PCMX 4-Chloro-3,5-dimethylphenol|4-Chloro-3,5-xylenol 4-chloro-3???5-dimethylphenol 4-Chloro-m-xylenol Ayrtol Benzytol Benzytol; Dettol BSPBio_002007 Camel Chloro-xylenol Chloroxylenol (USP) Chloroxylenol [USAN:BAN:INN] [USAN] Chloroxylenol(USAN chloroxylenolum Chloroxylenolum [INN-Latin] Chlorxylenolum Clorossilenolo [DCIT] cloroxilenol Cloroxilenol [INN-Spanish] Desson Dettol EINECS 201-793-8 Espadol Husept Extra IDI1_000801 InChI=1/C8H9ClO/c1-5-3-7(10)4-6(2)8(5)9/h3-4,10H,1-2H m-Xylenol, 4-chloro- Nipacide MX Nipacide PX Ottasept Ottasept Extra PARA CHLORO-META-XYLENOL Para?Chloro Meta Xylenol (PCMX)? parachlorometaxylenol para-chloro-meta-xylenol Parametaxylenol p-Chloro-3,5-dimethylphenol p-Chloro-3,5-xylenol Pharmakon1600-01500182 Willenol V WLN: QR DG C1 E1 对氯间二甲苯酚 [Chinese]
CHLOROXYLENOL ( PCMX)
CHLORPHENESIN, N° CAS : 104-29-0 - Chlorphénésine, Autre langue : Clorfenesina, Nom INCI : CHLORPHENESIN, Nom chimique : 1,2-Propanediol, 3-(4-chlorophenoxy)-, N° EINECS/ELINCS : 203-192-6, Classification : Règlementé, Conservateur. La Chlorphénésine est un agent anti-microbien qui évite que les bactéries ne se développent dans les produits cosmétiques. Il pourrait causer des irritations, mais celles-ci semblent toutefois assez rares et légères dans les concentrations réglementées de 0,3%. Ses fonctions (INCI): Antimicrobien : Aide à ralentir la croissance de micro-organismes sur la peau et s'oppose au développement des microbes. Conservateur : Inhibe le développement des micro-organismes dans les produits cosmétiques.
Chlorphénésine
CUPRIC CHLORIDE, N° CAS : 7447-39-4, Nom INCI : CUPRIC CHLORIDE, Nom chimique : Copper (2+) chloride, N° EINECS/ELINCS : 231-210-2, Ses fonctions (INCI): Agent d'entretien de la peau : Maintient la peau en bon état. Noms français : Chlorure cuivrique; CHLORURE CUIVRIQUE ANHYDRE; CHLORURE DE CUIVRE(II); COPPER BICHLORIDE; COPPER DICHLORIDE COPPER(II) CHLORIDE; CUIVRE, DICHLORURE DE; Dichlorure de cuivre. Noms anglais : Cupric chloride. Utilisation: Catalyseur, fabrication de colorant
CHLORURE CUIVRIQUE ANHYDRE ( CUPRIC CHLORIDE)
Chlorure d'alkyldiméthylbenzyl ammonium, BENZALKONIUM CHLORIDE, cas no: 68391-01-5,BAC 50, BAC 80, BKC 50, BKC 80; Noms français : Chlorure d'alkyl(C12-C18)diméthylbenzyl ammonium; Chlorure d'alkyldiméthylbenzyl ammonium (C12-C18). Noms anglais : (C12-C18) Alkyldimethylbenzyl ammonium chloride; (C12-C18)Alkylbenzyldimethylammonium chloride; (C12-C18)Alkyldimethylbenzylammonium chloride; Quaternary ammonium compounds, benzyl-C12-18-alkyldimethyl, chlorides; SDA 16-052-00. (C12-C18) Alkyldimethylbenzyl ammonium chloride. Le chlorure de benzalkonium, aussi connu sous le nom de chlorure d'alkyldiméthylbenzylammonium et ADBAC, est un mélange de chlorures d'alkylbenzyldiméthylammonium avec des chaînes carbonées de longueur variable. Ce produit est un agent de surface cationique de la famille des ammoniums quaternaires.Le chlorure de benzalkonium est facilement soluble dans l'éthanol et l'acétone. Bien que la dissolution dans l'eau soit lente, les solutions aqueuses sont plus faciles d'emploi et sont plus largement utilisées. Les solutions devraient être neutres à légèrement basiques avec une couleur allant de l'incolore au jaune pâle. Les solutions moussent fortement lorsqu'elles sont secouées, ont un goût amer et ont une odeur d'amande détectable seulement dans les échantillons concentrés.Les applications sont très variées, allant de la formulation de désinfectants à l'inhibition de « corrosion microbienne » dans le pétrole ou les huiles minérales3. Il est utilisé dans les produits pharmaceutiques tels que les solutions cutanées antiseptiques ou les lingettes. Il est utilisé comme conservateur dans les cosmétiques tels que les gouttes pour les yeux et le nez. On a reporté des cas de sensibilisations associées à l'utilisation continue et prolongée du produit. Il faut mettre des gants avant toute utilisation. On pense que le mécanisme bactéricide est dû à la disruption des interactions intermoléculaires. Ceci peut causer la dissociation des lipides dans la membrane cellulaire, ce qui compromet la perméabilité de la cellule et induit une fuite de son contenu. D'autres complexes biomoléculaires à l'intérieur de la cellule bactérienne peuvent aussi se dissocier. Les enzymes, qui contrôlent les activités respiratoires et métaboliques de la cellule, sont particulièrement susceptibles d'être désactivées. Les solutions de chlorure de benzalkonium sont des agents bactéricides à action rapide et de durée modérément longue. Ils sont actifs contre certains protozoaires, virus, bactéries et fungi. Les spores des bactéries sont considérées comme résistantes. Les bactéries à Gram positif sont généralement plus sensibles que les Gram négatif. L'activité n'est pas grandement influencée par le pH, mais augmente aux températures élevées et avec la durée d'exposition. De nouvelles formulations utilisant du benzalkonium mélangé à d'autres ammoniums quaternaires peuvent être utilisées pour étendre le spectre biocide et augmenter l'efficacité du désinfectant. Cette technique a été utilisée pour améliorer l'activité virucide. L'utilisation d'excipients appropriés peut améliorer l'efficacité et les propriétés détergentes, et éviter la désactivation lors de l'utilisation. La formulation requiert beaucoup de soin car les solutions de benzalkonium peuvent être désactivées en présence de contaminants organiques et inorganiques. Les solutions sont incompatibles avec les savons, les nitrates1 et ne doivent pas être mélangées avec des surfactants anioniques. Les sels des eaux dures peuvent aussi réduire l'activité biocide. Comme pour tous les désinfectants, il est recommandé de traiter des surfaces sans saletés visibles. Bien que des niveaux dangereux ne puissent être atteints dans les conditions d'utilisation normale, le benzalkonium et les autres détergents peuvent être néfastes aux organismes marins. Les désinfectants à base d'ammoniums quaternaires sont actifs à faible concentration, si bien que des doses excessives devraient être évitées. Le chlorure de benzalkonium a aussi une activité spermicide.Solubilité Très soluble dans l'eau, l'alcool, l'acétone ; Presque insoluble dans l'éther ; 1g d'anhydre dans 6ml de benzène, 100ml d'éther1 This substance is identified by SDA Substance Name: C12-C18 alkyl benzyl dimethyl ammonium chloride...Alkil (C12-18) chlorku dimetylobenzyloamonu (ADBAC (C12-18)) (pl) Alkil (C12-18) dimetilbenzil amonijev klorid (ADBAC (C12-18) (hr) Alkil (C12-18) dimetilbenzil amonio chloridas (ADBAC (C12-18)) (lt) Alkil (C12-18) dimetilbenzilamonija hlorīds (ADBAC (C12-18)) (lv) Alkil (C12–16) dimetil-benzil-ammónium-klorid (ADBAC [C12–18]) (hu) Alkil (C12–18) dimetilbenzil amonijev klorid (ADBAC (C12–18)) (sl) Alkyl (C12-18) dimethylbenzyl ammonium chloride (ADBAC (C12-18)) (mt) alkyl(C12-18)benzyldimetylamónium-chlorid [ADBAC (C12-18)] (sk) alkyl(C12-18)dimethylbenzylammoniumchlorid (ADBAC (C12-18)) (cs) Alkyl(C12-18)dimethylbenzylammoniumchloride (ADBAC (C12-18)) (nl) Alkyl(C12-18)dimetylbensylammoniumklorid (ADBAC (C12-18)) (sv) Alkyyli-(C12-18)-dimetyylibentsyyliammoniumkloridi (ADBAC(C12-18)) (fi) C12–18-alküüldimetüülbensüülammooniumkloriid (ADBAC (C12–18)) (et) Chlorure d'alkyl(C12-C18)diméthylbenzylammonium [ADBAC (C12-18)] (fr) Cloreto de alquil(C12-18)dimetilbenzilamónio (ADBAC C12-18) (pt) Cloruro de C12-18-alquildimetilbencilamonio (ADBAC (C12-18)) (es) Clorură de alchil (C12-18) dimetilbenzil amoniu [ADBAC (C12-18)] (ro) Composti di ammonio quaternario, benzil- C12-18 -alchildimetil, cloruri (ADBAC (C12-18) (it) Χλωριούχο αλκυλο(C12-18)διμεθυλοβενζυλαμμώνιο (ADBAC (C12-18)) (el) Алкил(C12-18)диметилбензиламониев хлорид (ADBAC (C12-18)) (bg) ALKYL DIMETHYL BENZYL AMMONIUM CHLORIDE Alkyldimethylbenzyl ammonium chloride Benzalkonium Chloride benzyl-dimethyl-tetradecylazanium chloride C12-C18 alkyl benzyl dimethyl ammonium chloride N-benzyl-N,N-dimethyl-C12-18-(evennumbered)-alkyl-1-aminium chloride N-benzyl-N,N-dimethyltetradecan-1-aminium chloride
Chlorure d'alkyldiméthylbenzyl ammonium (BENZALKONIUM CHLORIDE)
Formule moléculaire brute : H4ClN; Noms français :Ammonium, chlorure d'; Chlorure d'ammonium. Noms anglais :Ammonium chloride; Ammonium chloride fume; AMMONIUM MURIATE, Utilisation . : AMMONIUM CHLORIDE, N° CAS : 12125-02-9, Chlorure d'ammonium, Nom INCI : AMMONIUM CHLORIDE, Nom chimique : Ammonium chloride, N° EINECS/ELINCS : 235-186-4. Additif alimentaire : E510i Ses fonctions (INCI): Régulateur de pH : Stabilise le pH des cosmétiques, Agent masquant : Réduit ou inhibe l'odeur ou le goût de base du produit, Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques. 12125-02-9 [RN]; 235-186-4 [EINECS]; Ammoniac, Sal; Ammonii Chloridum [Latin]; Ammonium Chloratum [Latin]; Ammonium chloride [JAN] [USAN] [USP] ; Ammoniumchlorid [German] ; Ammoniumklorid [German]; Chlorid amonny [Czech]; Chloride, Ammonium; Chlorure d'ammonium [French] ; Amchlor; Ammon Chlor; Ammonchlor; Ammoneric; Ammonii Chloridum; Ammonium Chloratum; Ammonium chloride, biochemical grade; Ammonium chloride-β solid Ammonium muriate; Ammonium-14N chloride; ammoniumchloride; Ammoniumklorid; azanium chloride; Chlorammonic; Chloramon; Cloruro de Amonio; Conclyte-A; Conclyte-A (TN); D000643; Darammon; Gen-Diur (Spain); MFCD00011420 [MDL number]; Quaternary Ammonium Chloride; SAL AMMONIA; Sal ammoniac fume; Salammonite; Salmiac; Salmiac235-186-4MFCD00011420; 氯化铵 [Chinese]
Chlorure d'ammonium
BEHENTRIMONIUM CHLORIDE, N° CAS : 17301-53-0 - Chlorure de behentrimonium,Autres langues : Behentrimoniumchlorid, Cloruro de behentrimonio, Cloruro di Behentrimonium; Nom INCI : BEHENTRIMONIUM CHLORIDE, Nom chimique : Docosyltrimethylammonium chloride, N° EINECS/ELINCS : 241-327-0, Classification : Ammonium quaternaire, Règlementé, Conservateur. Le Behentrimonium Chloride est un ammonium quaternaire principalement utilisé en cosmétique en tant que qu'agent anti-statique ou conditionneur capillaire. Il est employé pour ses raisons principalement dans les soins capillaires. Ses fonctions (INCI): Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface, Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance, Conservateur : Inhibe le développement des micro-organismes dans les produits cosmétiques.Le chlorure de béhentrimonium, également connu sous le nom de chlorure de docosyltriméthylammonium ou BTAC-228, est un composé organique jaune semblable à de la cire de formule chimique CH₃ (CH₂) ₂₁N (CH₃) ₃, utilisé comme agent antistatique et, parfois, comme désinfectant17301-53-0 . 1-Docosanaminium, N,N,N-trimethyl-, chloride; 1-Docosanaminium, N,N,N-trimethyl-, chloride (1:1); Behentrimonium chloride; C22-alkyltrimethylammonium chloride; Docosyltrimethylammonium chloride;N,N,N-Trimethyl-1-docosanaminium chloride; docosyl(trimethyl)azanium;chloride; docosyltrimethylazanium chloride; N,N,N-trimethyldocosan-1-aminium chloride; 1-Docosanaminium, N,N,N-trimethyl-, chloride (1:1) ; 241-327-0 [EINECS]; Behentrimonium chloride; Chlorure de N,N,N-triméthyl-1-docosanaminium [French] ; N,N,N-Trimethyl-1-docosanaminium chloride ; N,N,N-Trimethyl-1-docosanaminiumchlorid; N,N,N-Trimethyldocosan-1-aminium chloride [17301-53-0] 1-Docosanaminium, N,N,N-trimethyl-, chloride BEHENYL TRIMETHYL AMMONIUM CHLORIDE behenyl-trimethyl-ammonium chloride docosyl(trimethyl)azanium and chloride docosyl(trimethyl)azanium;chloride docosyltrimethylammonium chloride docosyl-trimethylammonium chloride docosyl-trimethyl-ammonium chloride docosyltrimethylammoniumchloride docosyl-trimethylazanium chloride docosyl-trimethyl-azanium chloride DOCOSYLTRIMETHYLAZANIUM CHLORIDE EINECS 241-327-0 MFCD09744670 [MDL number] 山崳基三甲基氯化銨 [Chinese]. Behentrimonium chloride, also known as docosyltrimethylammonium chloride or BTAC-228, is a yellow waxlike organic compound with chemical formula CH3(CH2)21N(Cl)(CH3)3, used as an antistatic agent and, sometimes, a disinfectant. It is commonly found in cosmetics such as conditioners, hair dye, and mousse, and also in detergents.
Chlorure de behentrimonium ( Behentrimonium chloride)
CALCIUM CHLORIDE, N° CAS : 10043-52-4 - Chlorure de calcium, Nom INCI : CALCIUM CHLORIDE, Nom chimique : Calcium chloride, N° EINECS/ELINCS : 233-140-8 Additif alimentaire : E509, Astringent : Permet de resserrer les pores de la peau, Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques. Noms français :CALCIUM, DICHLORURE DE; Chlorure de calcium, CHLORURE DE CALCIUM ANHYDRE; DICHLORURE DE CALCIUM. Noms anglais : Calcium chloride; CALCIUM CHLORIDE ANHYDROUS; CALCIUM DICHLORIDE. Utilisation: Agent de déshydratation
Chlorure de calcium ( Calcium chloride )
CETRIMONIUM CHLORIDE; N° CAS : 112-02-7 - Chlorure de cétrimonium, Origine(s) : Synthétique, Autres langues : Cetrimoniumchlorid, Cloruri di cetrimonium, Cloruros de cetrimonio, Nom INCI : CETRIMONIUM CHLORIDE; 1-HEXADECANAMINIUM, N,N,N-TRIMETHYL-, CHLORIDE; CETYLTRIMETHYLAMMONIUM CHLORIDE; CHLORURE DE CETRIMONIUM; CHLORURE DE CETYLTRIMETHYLAMMONIUM; CHLORURE DE N,N,N-TRIMETHYL HEXADECANAMINIUM-1; N-HEXADECYLTRIMETHYLAMMONIUM CHLORIDE; PALMITYLTRIMETHYLAMMONIUM CHLORIDE; TRIMETHYLHEXADECYLAMMONIUM CHLORIDE; Nom chimique : 1-Hexadecanaminium, N,N,N-trimethyl-, chloride, N° EINECS/ELINCS : 203-928-6, Classification : Ammonium quaternaire, Règlementé, Conservateur, Tensioactif cationique. Le chlorure de cétrimonium est un ammonium quaternaire utilisé en cosmétique pour ses propriétés antistatiques. Comme c'est un tensioactif cationique, il permet de disperser l'eau et l'huile, et ainsi de favoriser des consistances douces et agréables. Cet ingrédient est souvent utilisé dans les soins capillaires en lieu et place (ou parfois avec) des silicones. Il peut aussi être utilisé en tant que conservateur.Antimicrobien : Aide à ralentir la croissance de micro-organismes sur la peau et s'oppose au développement des microbes Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile) Conservateur : Inhibe le développement des micro-organismes dans les produits cosmétiques. Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Utilisation: Fabrication de fongicides et de cosmétiques. C16-alkyltrimethylammonium chloride Cetrimonium chloride Trimethylhexadecylammonium chloride 1-Hexadecanaminium, N,N,N-trimethyl-, chloride (1:1) 1-Hexadecanaminium, N,N,N-trimethyl-, chloride Cetrimoniumchlorid hexadecyl(trimethyl)azanium Hexadecyl(trimethyl)azanium chloride hexadecyl(trimethyl)azanium;chloride hexadecyl-trimethylammonium chloride Hexadecyltrimethylammonium Chloride hexadecyltrimethylazanium chloride N,N,N-Trimethyl-1-hexadecanaminium chloride N,N,N-trimethylhexadecan-1-aminium chloride N-Hexadecyl-N,N,N-trimethylammoniumchlorid
Chlorure de cétrimonium ( CETRIMONIUM CHLORIDE)
MAGNESIUM CHLORIDE, N° CAS : 7786-30-3 - Chlorure de magnésium, Origine(s) : Synthétique, Minérale. Autres langues : Cloruro de magnesio, Cloruro di magnesio, Magnesiumchlorid, Nom INCI : MAGNESIUM CHLORIDE. Nom chimique : Magnesium chloride. N° EINECS/ELINCS : 232-094-6. Additif alimentaire : E511. Compatible Bio (Référentiel COSMOS). Ses fonctions (INCI) : Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques
Chlorure de magnésium
DICHLOROMETHANE, N° CAS : 75-09-2 - Chlorure de méthylène, Nom INCI : DICHLOROMETHANE, Nom chimique : Dichloromethane, N° EINECS/ELINCS : 200-838-9, Ses fonctions (INCI):Solvant : Dissout d'autres substances. Noms français : Chlorure de méthylène; Dichlorométhane; Methylene bichloride; Methylene dichloride. Noms anglais : Dichloromethane; Methylene chloride Le chlorure de méthylène de qualité commerciale contient généralement un stabilisant pour le protéger des effets de l'air et de l'humidité. Les stabilisants les plus courants et leurs concentrations sont : l'éthanol, (0,1 à 0,2 %), le méthanol (0,1 à 0,2 %), le cyclohexane (0,01 à 0,03 %) et l'amylène (0,001 à 0,01 %). D'autres stabilisants peuvent aussi être utilisés, dont des composés phénoliques, des amines, des nitroalcanes, des éthers aliphatiques ou cycliques. Dans les domaines alimentaire et pharmaceutique, le chlorure de méthylène utilisé comme solvant d'extraction, est de qualité technique, pur à plus de 99,99 %. Utilisation: Le chlorure de méthylène est utilisé comme : décapant à peinture et vernis décapant pour résines photorésistantes solvant de dégraissage composant d'aérosols et de colles agent d'expansion de mousses polyuréthanes solvant de procédé pour les films et fibres cellulosiques agent d'extraction dans les industries alimentaires et pharmaceutiques intermédiaire de synthèse dans la fabrication d'hydrofluorocarbones.
Chlorure de méthylène ( Methylene chloride)
STANNOUS CHLORIDE N° CAS : 7772-99-8 - Chlorure d'étain Nom INCI : STANNOUS CHLORIDE Nom chimique : Tin dichloride N° EINECS/ELINCS : 231-868-0 Additif alimentaire : E512 Ses fonctions (INCI) Agent réducteur : Modifie la nature chimique d'une autre substance en ajoutant de l'hydrogène ou en éliminant l'oxygène
Chlorure d'étain
Benzalkonium bromide; Alkyl Dimethyl Benzyl Ammonium Bromide; BENZALKONIUM BROMIDE, N° CAS : 91080-29-4 - Chlorure, bromure et saccharinate de benzalkonium. Nom INCI :BENZALKONIUM BROMIDE. N° EINECS/ELINCS : 293-522-5. Classification : Ammonium quaternaire, Règlementé, Conservateur. Antimicrobien : Aide à ralentir la croissance de micro-organismes sur la peau et s'oppose au développement des microbes. Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface. Déodorant : Réduit ou masque les odeurs corporelles désagréables. Conservateur : Inhibe le développement des micro-organismes dans les produits cosmétiques.Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. 222-556-5 [EINECS]; 3529-04-2 [RN] Benzenemethanaminium, N-hexadecyl-N,N-dimethyl-, bromide Bromure de N-benzyl-N,N-diméthyl-1-hexadécanaminium [French] CETALKONIUM BROMIDE Cetylbenzyldimethylammonium bromide N-Benzyl-N,N-dimethyl-1-hexadecanaminium bromide N-Benzyl-N,N-dimethyl-1-hexadecanaminiumbromid [German] n-benzyl-n,n-dimethylhexadecan-1-aminium bromide Benzalkonium bromide benzyl(hexadecyl)dimethylammonium bromide BENZYL(HEXADECYL)DIMETHYLAZANIUM BROMIDE benzyl-cetyl-dimethyl-ammonium bromide benzyl-hexadecyl-dimethylammonium bromide benzyl-hexadecyl-dimethyl-ammonium bromide benzyl-hexadecyl-dimethylazanium and bromide benzyl-hexadecyl-dimethylazanium bromide Cethylbenzyldimethylammonium bromide CETYLBENZYLDIMETHYL AMMONIUM BROMIDE CETYLBENZYLDIMETHYLAMMONIUMBROMIDE EINECS 222-556-5 hexadecyl-dimethyl-(phenylmethyl)azanium bromide hexadecyldimethylbenzyl ammonium bromide hexadecyldimethylbenzylamine, bromide
Chlorure, bromure et saccharinate de benzalkonium
CHOLESTEROL, N° CAS : 57-88-5, Nom INCI : CHOLESTEROL, Nom chimique : Cholest-5-en-3-ol (beta)-, N° EINECS/ELINCS : 200-353-2, Emollient : Adoucit et assouplit la peau, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Agent d'entretien de la peau : Maintient la peau en bon état, Agent stabilisant : Améliore les ingrédients ou la stabilité de la formulation et la durée de conservation, Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques
CHOLESTEROL
CHOLESTERYL CHLORIDE, N° CAS : 910-31-6, Nom INCI : CHOLESTERYL CHLORIDE,Nom chimique : 3-.beta.-Chlorocholest-5-ene, N° EINECS/ELINCS : 213-004-4, Ses fonctions (INCI), Agent d'entretien de la peau : Maintient la peau en bon état
CHOLESTERYL CHLORIDE
CHOLESTERYL DICHLOROBENZOATE, N° CAS : 32832-01-2, Nom INCI : CHOLESTERYL DICHLOROBENZOATE, Nom chimique : Cholest-5-en-3.beta.-yl 2,4-dichlorobenzoate, N° EINECS/ELINCS : 251-248-3, Ses fonctions (INCI): Agent d'entretien de la peau : Maintient la peau en bon état
CHOLESTERYL DICHLOROBENZOATE
CHOLETH-10, N° CAS : 27321-96-6, Nom INCI : CHOLETH-10, Classification : Composé éthoxylé, Ses fonctions (INCI), Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
CHOLETH-10
CHOLETH-15, N° CAS : 27321-96-6, Nom INCI : CHOLETH-15, Classification : Composé éthoxylé, Ses fonctions (INCI). Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile). Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
CHOLETH-15
CHOLETH-24, N° CAS : 27321-96-6, Nom INCI : CHOLETH-24, Classification : Composé éthoxylé, Ses fonctions (INCI): Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile). Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
CHOLETH-24
(2-Hydroxyethyl)trimethylammonium chloride; Hepacholine; Biocolina; lipotril; Choline hydrochloride; Cholinium chloride; (2-Hydroxyethyl)trimethylammonium chloride; Choline hydrochloride; 2-Hydroxy-N,N,N-trimethylethanaminium Chloride; Chloride De Choline (French); Biocolina; N,N,N-Trimethyl-2-hydroxyethylammonium Chloride; 2-Hydroxy-N,N,N-trimethylethanaminium, Chloride CAS NO: 67-48-1
Choline Chloride
SYNONYMS Chondroitin 4'-sulfate; Chondroitin 6'-sulfate CAS NO. 9007-28-7
CHONDROITIN SULFATE
Chromic oxide; Chrome oxide green; Chromium (III) oxide; Chromium sesquioxide; Chrome green; Chromium oxide green pigments; Dichromium trioxide; Chromia; Chromium (III) oxide; Anhydride Chromique (French); Casalis green; Chrome ochre; Chromia; Chromic acid green; Chromium oxide; C.I. 77288; Green Chrome Oxide; Green Oxide of Chromium; Green chromic oxide; Green chromium oxide; Green cinnabar; Green oxide of chromium CAS NO:1308-38-9
CHROME OXIDE GREEN
CHROMIUM HYDROXIDE GREEN N° CAS : 12001-99-9 Nom INCI : CHROMIUM HYDROXIDE GREEN Nom chimique : Dichromium trioxide (CI 77289) Classification : Règlementé, Colorant capillaire Restriction en Europe : IV/130 Ses fonctions (INCI) Agent colorant pour cheveux : Colore les cheveux
CHROMIUM HYDROXIDE GREEN
Chromic Acid; Chromic anhydride; Chromium anhydride; Chromium VI oxide; Chromium trioxide anhydrous; Chromic trioxide; Chromerge; Chromic acid, solid; Chromium(VI) oxide (1:3); Anhydride chromique; cas no: 1333-82-0
Chromic Acid
Synonyms: Cromic acid;dihydroxy(diketo)chromium;CHROMIC ACID CAS: 7738-94-5
CINNAMAL
METHYL CINNAMATE, N° CAS : 103-26-4. Nom INCI : METHYL CINNAMATE. Nom chimique : Methyl 3-phenyl-2-propenoate. N° EINECS/ELINCS : 203-093-8. Ses fonctions (INCI) : Agent parfumant : Utilisé pour le parfum et les matières premières aromatiques
CINNAMATE DE MÉTHYLE ( METHYL CINNAMATE)
CINNAMIC ACID, N° CAS : 140-10-3 / 621-82-9, Nom INCI : CINNAMIC ACID, N° EINECS/ELINCS : 205-398-1 / 210-708-3, Ses fonctions (INCI): Agent d'entretien de la peau : Maintient la peau en bon état. Agent parfumant : Utilisé pour le parfum et les matières premières aromatiques
CINNAMIC ACID
CINNAMYL ACETATE, N° CAS : 103-54-8 Nom INCI : CINNAMYL ACETATE Nom chimique : Cinnamyl acetate N° EINECS/ELINCS : 203-121-9 Ses fonctions (INCI) Agent parfumant : Utilisé pour le parfum et les matières premières aromatiques
CINNAMYL ACETATE
Noms français : vitamin B6; CIRE D'ABEILLE; CIRE D'ABEILLE JAUNE; Noms anglais : BEESWAX, Utilisation : Cire, fabrication de produits pharmaceutique(5-Hydroxy-6-methylpyridine-3,4-diyl)dimethanol; 2-methyl-3-hydroxy-4,5-bis(hydroxy-methyl) pyridine; 2-Methyl-3-hydroxy-4,5-dihydroxymethyl-pyridin [German]; 3,4-Pyridinedimethanol, 5-hydroxy-6-methyl- ; 3-hydroxy-2-Picoline-4,5-dimethanol; 3-Hydroxy-4,5-dimethylol-a-picoline; 4,5-Bis(hydroxymethyl)-2-methyl-3-pyridinol; 4,5-Bis(hydroxymethyl)-2-methyl-3-pyridinol [German] 4,5-Bis(hydroxyméthyl)-2-méthyl-3-pyridinol [French]; 4,5-bis(hydroxymethyl)-2-methylpyridin-3-ol; 5-Hydroxy-6-methyl-3,4-pyridinedimethanol; 65-23-6 [RN]; Bezatin; Piridoxina [Spanish]; Pirivitol; Pyridoxine [Wiki]; Pyridoxinum [Latin]; Pyridoxol; Vitamin B6 ; VITAMIN B6 COMPLEX; Piridossina; 139854 [Beilstein]; 2-Methyl-3-hydroxy-4,5-bis(hydroxymethyl)pyridine 2-Methyl-3-hydroxy-4,5-di(hydroxymethyl)pyridine; 2-Methyl-3-hydroxy-4,5-dihydroxymethyl-pyridin [German]; 2-methyl-3-hydroxy-4,5-dihydroxymethylpyridine; 2-Methyl-4,5-bis(hydroxymethyl)-3-hydroxypyridine; 2-methyl-4,5-dimethylol-pyridin-3-ol; 3-Hydroxy-4,5-bis(hydroxymethyl)-2-methylpyridine; 3-hydroxy-4,5-dimethylol-α-picoline; 3-Hydroxy-4,5-dimethylol-α-picoline; 4,5-bis(hydroxymethyl)-2-methyl-pyridin-3-ol; 4,5-Bis-hydroxymethyl-2-methyl-pyridin-3-ol; Adermin Adermine Becilan Becilan Beesix Beesix Beeswax Benadon Bonasanit BPBio1_000646 BSPBio_000586 DB00165 Gravidox Hexa-βlin Hexobion Hydoxin hydroxin Naturetime B6 Nestrex Oprea1_061614 Pharmakon1600-01505453 Piridossina [DCIT] Piridoxina [INN-Spanish] Prestwick2_000623 Prestwick3_000623 Pridoxine PXL Pyridoxin Pyridoxine free base Pyridoxinum [INN-Latin] Pyridoxolum Pyroxin vitamin B6 vitaminb6
CIRE D'ABEILLE ( BEESWAX)
CIS-3-HEXENAL N° CAS : 6789-80-6 Nom INCI : CIS-3-HEXENAL Nom chimique : (Z)-Hex-3-enal N° EINECS/ELINCS : 229-854-4 Ses fonctions (INCI) Agent parfumant : Utilisé pour le parfum et les matières premières aromatiques
CIS-3-HEXENAL
CIS-3-HEXENYL SALICYLATE N° CAS : 65405-77-8 Nom INCI : CIS-3-HEXENYL SALICYLATE Nom chimique : (Z)-3-Hexenyl 2-hydroxybenzoate N° EINECS/ELINCS : 265-745-8 Ses fonctions (INCI) Agent parfumant : Utilisé pour le parfum et les matières premières aromatiques
CIS-3-HEXENYL SALICYLATE
Isothiazolinone chloride; Kathon 886; Kathon CG; CMIT/MIT mixture; 5-Chloro-2-methyl-3(2H)-isothiazolone mixt. with 2-methyl-3(2H)-isothiazolone; Chloromethylisothiazolione/Methylisothiazolinone (75%/25%); CMI/MI; MCI/MI; CIT/MIT; Microcare IT; Microcare ITL; Acticide 14; Acticide LGMicrocide III; ProClin 300; Slaoff 360; Somacide RS; Tret-O-Lite XC 215; Zonen F; cas no: 55965-84-9
CIT / MIT & BENZIL ALCOHOL
CITRAL, N° CAS : 5392-40-5 - Citral, Nom INCI : CITRAL, Nom chimique : 2,6-Octadienal, 3,7-dimethyl-; 3,7-Dimethyl-2,6-octadienal, N° EINECS/ELINCS : 226-394-6, Classification : Allergène, Règlementé. Ses fonctions (INCI): Agent parfumant : Utilisé pour le parfum et les matières premières aromatiques, Agent arômatisant : Donne un arôme au produit cosmétique. Noms français : 2,6-OCTADIENAL, 3,7-DIMETHYL-; 3,7-DIMETHYL-2,6-OCTADIENAL; Citral; DIMETHYL-3,7 OCTADIENAL-2,6; Noms anglais : Citral; Utilisation: Agent de saveur, fabrication de produits organiques; 2,6-Dimethyloctadien-2,6-al-8; 2,6-Octadienal, 3,7-dimethyl-; 3,7-Dimethyl-1,2,6-octadienal; 3,7-Dimethyl-2,6-octadienal; 3,7-Dimethyl-trans-2,6-octadienal; Citral (natural); Lemsyn GB; Plant oils / Citronella oil. Translated names: (E)-3,7-dimetylookta-2,6-dienal i (Z)-3,7-dimetylookta-2,6-dienal (pl); 3,7-dimetil-2,6-ottadienale (it); citral (cs); citrale (it); citralis (lt); citrál (sk); citrāls (lv); cytral α i cytral ß (pl); geranial i neral (pl); Sitraali (fi); Tsitraal (et); κιτράλ (el); цитрал (bg); 2,6-octadienal, 3,7-dimethyl- 226-394-6 [EINECS] 2303 3,7-Dimethyl-1,2,6-octadienal 3,7-Dimethylocta-2,6-dienal 5392-40-5 [RN] Citral Geranial and neral mixture Lemsyn GB MFCD00006997 [MDL number] "3,7-DIMETHYL-2,6-OCTADIENAL" "3,7-DIMETHYL-2,6-OCTADIENAL"|"3,7-DIMETHYLOCTA-2,6-DIENAL" "3,7-DIMETHYLOCTA-2,6-DIENAL" (E)-3,7-dimethylocta-2,6-dienal Citicoline Sodium [USAN] citral (mixture of cis - and trans -) citral, 95%, mixture of cis and trans citral-顺式 + 反式 Diethylester kyseliny adipove [Czech] Lemarome Lemonal
CITRAL
Synonyms: (3-hydroxy-2,5-dioxo-tetrahydro-furan-3-yl)-acetic acid; citric anhydride;CAS No.: 24555-16-6
CITRIC ACID ANHYDRIDE
Citric Acid; beta-Hydroxytricarballylic acid; Aciletten; Citretten; Citro; 2-Hydroxy-1,2,3-propanetricarboxylic acid; ��-Hydroxytricarballylic acid; Kyselina citronova; Kyselina 2-hydroxy-1,2,3-propantrikarbonova; 2-Hydroxytricarballylic acid; Citronensäure CAS NO:77-92-9
CITRIC ACID ANHYDROUS
Citric Acid Anhydrous General description of Citric acid anhydrous Citric acid anhydrous is an organic acid. Its molar enthalpy of solution in water has been reported to be ΔsolHm (298.15K, m = 0.0203molkg-1) = (29061±123)Jmol-1. It can be produced by crystallization from mother liquor of citric acid solution at 20-25°C during citric acid synthesis. An investigation of its crystal growth kinetics indicates that growth is linearly dependent on size. Application of Citric acid anhydrous Citric acid anhydrous was used in the preparation of citric acid solution employed in the acetone method of 68Ga pre-purification and radiolabeling technique. Citric acid anhydrous may be used: • As release-modifying agent to improve the release of diltiazem hydrochloride from melt extruded Eudragit RS PO tablets. • To prepare citrate buffer for use in the preparation of platelets for intravital microscopy. • To prepare Tris-citrate buffer employed for the electrophoresis of bacterial enzymes. Citric acid anhydrous is a weak organic acid that has the molecular formula C6H8O7. It occurs naturally in citrus fruits. In biochemistry, it is an intermediate in the Citric acid anhydrous cycle, which occurs in the metabolism of all aerobic organisms. More than two million tons of Citric acid anhydrous are manufactured every year. It is used widely as an acidifier, as a flavoring and a chelating agent. A citrate is a derivative of Citric acid anhydrous; that is, the salts, esters, and the polyatomic anion found in solution. An example of the former, a salt is trisodium citrate; an ester is triethyl citrate. When part of a salt, the formula of the citrate anion is written as C6H5O3−7 or C3H5O(COO)3−3. Natural occurrence and industrial production of Citric acid anhydrous Lemons, oranges, limes, and other citrus fruits possess high concentrations of Citric acid anhydrous Citric acid anhydrous exists in a variety of fruits and vegetables, most notably citrus fruits. Lemons and limes have particularly high concentrations of the acid; it can constitute as much as 8% of the dry weight of these fruits (about 47 g/l in the juices). The concentrations of Citric acid anhydrous in citrus fruits range from 0.005 mol/L for oranges and grapefruits to 0.30 mol/L in lemons and limes; these values vary within species depending upon the cultivar and the circumstances in which the fruit was grown. Citric acid anhydrous was first isolated in 1784 by the chemist Carl Wilhelm Scheele, who crystallized it from lemon juice. Industrial-scale Citric acid anhydrous production first began in 1890 based on the Italian citrus fruit industry, where the juice was treated with hydrated lime (calcium hydroxide) to precipitate calcium citrate, which was isolated and converted back to the acid using diluted sulfuric acid. In 1893, C. Wehmer discovered Penicillium mold could produce Citric acid anhydrous from sugar. However, microbial production of Citric acid anhydrous did not become industrially important until World War I disrupted Italian citrus exports. In 1917, American food chemist James Currie discovered certain strains of the mold Aspergillus niger could be efficient Citric acid anhydrous producers, and the pharmaceutical company Pfizer began industrial-level production using this technique two years later, followed by Citrique Belge in 1929. In this production technique, which is still the major industrial route to Citric acid anhydrous used today, cultures of A. niger are fed on a sucrose or glucose-containing medium to produce Citric acid anhydrous. The source of sugar is corn steep liquor, molasses, hydrolyzed corn starch, or other inexpensive, sugary solution. After the mold is filtered out of the resulting solution, Citric acid anhydrous is isolated by precipitating it with calcium hydroxide to yield calcium citrate salt, from which Citric acid anhydrous is regenerated by treatment with sulfuric acid, as in the direct extraction from citrus fruit juice. In 1977, a patent was granted to Lever Brothers for the chemical synthesis of Citric acid anhydrous starting either from aconitic or isocitrate/alloisocitrate calcium salts under high pressure conditions; this produced Citric acid anhydrous in near quantitative conversion under what appeared to be a reverse, non-enzymatic Krebs cycle reaction. Global production was in excess of 2,000,000 tons in 2018. More than 50% of this volume was produced in China. More than 50% was used as an acidity regulator in beverages, some 20% in other food applications, 20% for detergent applications, and 10% for applications other than food, such as cosmetics, pharmaceuticals, and in the chemical industry. Chemical characteristics of Citric acid anhydrous Speciation diagram for a 10-millimolar solution of Citric acid anhydrous Citric acid anhydrous can be obtained as an anhydrous (water-free) form or as a monohydrate. The anhydrous form crystallizes from hot water, while the monohydrate forms when Citric acid anhydrous is crystallized from cold water. The monohydrate can be converted to the anhydrous form at about 78 °C. Citric acid anhydrous also dissolves in absolute (anhydrous) ethanol (76 parts of Citric acid anhydrous per 100 parts of ethanol) at 15 °C. It decomposes with loss of carbon dioxide above about 175 °C. Citric acid anhydrous is a tribasic acid, with pKa values, extrapolated to zero ionic strength, of 2.92, 4.28, and 5.21 at 25 °C. The pKa of the hydroxyl group has been found, by means of 13C NMR spectroscopy, to be 14.4. The speciation diagram shows that solutions of Citric acid anhydrous are buffer solutions between about pH 2 and pH 8. In biological systems around pH 7, the two species present are the citrate ion and mono-hydrogen citrate ion. The SSC 20X hybridization buffer is an example in common use. Tables compiled for biochemical studies are available. On the other hand, the pH of a 1 mM solution of Citric acid anhydrous will be about 3.2. The pH of fruit juices from citrus fruits like oranges and lemons depends on the Citric acid anhydrous concentration, being lower for higher acid concentration and conversely. Acid salts of Citric acid anhydrous can be prepared by careful adjustment of the pH before crystallizing the compound. See, for example, sodium citrate. The citrate ion forms complexes with metallic cations. The stability constants for the formation of these complexes are quite large because of the chelate effect. Consequently, it forms complexes even with alkali metal cations. However, when a chelate complex is formed using all three carboxylate groups, the chelate rings have 7 and 8 members, which are generally less stable thermodynamically than smaller chelate rings. In consequence, the hydroxyl group can be deprotonated, forming part of a more stable 5-membered ring, as in ammonium ferric citrate, (NH4)5Fe(C6H4O7)2·2H2O. Citric acid anhydrous can be esterified at one or more of its three carboxylic acid groups to form any of a variety of mono-, di-, tri-, and mixed esters. Biochemistry of Citric acid anhydrous Citric acid anhydrous cycle Citrate is an intermediate in the TCA cycle (aka TriCarboxylic Acid cycle, or Krebs cycle, Szent-Györgyi), a central metabolic pathway for animals, plants, and bacteria. Citrate synthase catalyzes the condensation of oxaloacetate with acetyl CoA to form citrate. Citrate then acts as the substrate for aconitase and is converted into aconitic acid. The cycle ends with regeneration of oxaloacetate. This series of chemical reactions is the source of two-thirds of the food-derived energy in higher organisms. Hans Adolf Krebs received the 1953 Nobel Prize in Physiology or Medicine for the discovery. Some bacteria (notably E. coli) can produce and consume citrate internally as part of their TCA cycle, but are unable to use it as food because they lack the enzymes required to import it into the cell. After tens of thousand of evolutions in a minimal glucose medium that also contained citrate during Richard Lenski's Long-Term Evolution Experiment, a variant E. coli evolved with the ability to grow aerobically on citrate. Zachary Blount, a student of Lenski's, and colleagues studied these "Cit+" E. coli as a model for how novel traits evolve. They found evidence that, in this case, the innovation was caused by a rare duplication mutation due to the accumulation of several prior "potentiating" mutations, the identity and effects of which are still under study. The evolution of the Cit+ trait has been considered a notable example of the role of historical contingency in evolution. Other biological roles of Citric acid anhydrous Citrate can be transported out of the mitochondria and into the cytoplasm, then broken down into acetyl-CoA for fatty acid synthesis, and into oxaloacetate. Citrate is a positive modulator of this conversion, and allosterically regulates the enzyme acetyl-CoA carboxylase, which is the regulating enzyme in the conversion of acetyl-CoA into malonyl-CoA (the commitment step in fatty acid synthesis). In short, citrate is transported into the cytoplasm, converted into acetyl CoA, which is then converted into malonyl CoA by acetyl CoA carboxylase, which is allosterically modulated by citrate. High concentrations of cytosolic citrate can inhibit phosphofructokinase, the catalyst of a rate-limiting step of glycolysis. This effect is advantageous: high concentrations of citrate indicate that there is a large supply of biosynthetic precursor molecules, so there is no need for phosphofructokinase to continue to send molecules of its substrate, fructose 6-phosphate, into glycolysis. Citrate acts by augmenting the inhibitory effect of high concentrations of ATP, another sign that there is no need to carry out glycolysis. Citrate is a vital component of bone, helping to regulate the size of apatite crystals. Applications of Citric acid anhydrous Food and drink Powdered Citric acid anhydrous being used to prepare lemon pepper seasoning Because it is one of the stronger edible acids, the dominant use of Citric acid anhydrous is as a flavoring and preservative in food and beverages, especially soft drinks and candies. Within the European Union it is denoted by E number E330. Citrate salts of various metals are used to deliver those minerals in a biologically available form in many dietary supplements. Citric acid anhydrous has 247 kcal per 100 g. In the United States the purity requirements for Citric acid anhydrous as a food additive are defined by the Food Chemicals Codex, which is published by the United States Pharmacopoeia (USP). Citric acid anhydrous can be added to ice cream as an emulsifying agent to keep fats from separating, to caramel to prevent sucrose crystallization, or in recipes in place of fresh lemon juice. Citric acid anhydrous is used with sodium bicarbonate in a wide range of effervescent formulae, both for ingestion (e.g., powders and tablets) and for personal care (e.g., bath salts, bath bombs, and cleaning of grease). Citric acid anhydrous sold in a dry powdered form is commonly sold in markets and groceries as "sour salt", due to its physical resemblance to table salt. It has use in culinary applications, as an alternative to vinegar or lemon juice, where a pure acid is needed. Citric acid anhydrous can be used in food coloring to balance the pH level of a normally basic dye. Cleaning and chelating agent of Citric acid anhydrous Structure of an iron(III) citrate complex. Citric acid anhydrous is an excellent chelating agent, binding metals by making them soluble. It is used to remove and discourage the buildup of limescale from boilers and evaporators. It can be used to treat water, which makes it useful in improving the effectiveness of soaps and laundry detergents. By chelating the metals in hard water, it lets these cleaners produce foam and work better without need for water softening. Citric acid anhydrous is the active ingredient in some bathroom and kitchen cleaning solutions. A solution with a six percent concentration of Citric acid anhydrous will remove hard water stains from glass without scrubbing. Citric acid anhydrous can be used in shampoo to wash out wax and coloring from the hair. Illustrative of its chelating abilities, Citric acid anhydrous was the first successful eluant used for total ion-exchange separation of the lanthanides, during the Manhattan Project in the 1940s. In the 1950s, it was replaced by the far more efficient EDTA. In industry, it is used to dissolve rust from steel and passivate stainless steels. Cosmetics, pharmaceuticals, dietary supplements, and foods Citric acid anhydrous is used as an acidulant in creams, gels, and liquids. Used in foods and dietary supplements, it may be classified as a processing aid if it was added for a technical or functional effect (e.g. acidulent, chelator, viscosifier, etc.). If it is still present in insignificant amounts, and the technical or functional effect is no longer present, it may be exempt from labeling <21 CFR §101.100(c)>. Citric acid anhydrous is an alpha hydroxy acid and is an active ingredient in chemical skin peels. Citric acid anhydrous is commonly used as a buffer to increase the solubility of brown heroin. Citric acid anhydrous is used as one of the active ingredients in the production of facial tissues with antiviral properties. Other uses of Citric acid anhydrous The buffering properties of citrates are used to control pH in household cleaners and pharmaceuticals. Citric acid anhydrous is used as an odorless alternative to white vinegar for home dyeing with acid dyes. Sodium citrate is a component of Benedict's reagent, used for identification both qualitatively and quantitatively of reducing sugars. Citric acid anhydrous can be used as an alternative to nitric acid in passivation of stainless steel. Citric acid anhydrous can be used as a lower-odor stop bath as part of the process for developing photographic film. Photographic developers are alkaline, so a mild acid is used to neutralize and stop their action quickly, but commonly used acetic acid leaves a strong vinegar odor in the darkroom. Citric acid anhydrous/potassium-sodium citrate can be used as a blood acid regulator. Soldering flux. Citric acid anhydrous is an excellent soldering flux, either dry or as a concentrated solution in water. It should be removed after soldering, especially with fine wires, as it is mildly corrosive. It dissolves and rinses quickly in hot water. Synthesis of solid materials from small molecules In materials science, the Citrate-gel method is a process similar to the sol-gel method, which is a method for producing solid materials from small molecules. During the synthetic process, metal salts or alkoxides are introduced into a Citric acid anhydrous solution. The formation of citric complexes is believed to balance the difference in individual behavior of ions in solution, which results in a better distribution of ions and prevents the separation of components at later process stages. The polycondensation of ethylene glycol and Citric acid anhydrous starts above 100°С, resulting in polymer citrate gel formation. Safety of Citric acid anhydrous Although a weak acid, exposure to pure Citric acid anhydrous can cause adverse effects. Inhalation may cause cough, shortness of breath, or sore throat. Over-ingestion may cause abdominal pain and sore throat. Exposure of concentrated solutions to skin and eyes can cause redness and pain. Long-term or repeated consumption may cause erosion of tooth enamel. Citric acid anhydrous is an acidic compound from citrus fruits; as a starting point in the Krebs cycle, citrate is a key intermediate in metabolism. Citric acid is one of a series of compounds responsible for the physiological oxidation of fats, carbohydrates, and proteins to carbon dioxide and water. It has been used to prepare citrate buffer for antigen retrieval of tissue samples. The citrate solution is designed to break protein cross-links, thus unmasking antigens and epitopes in formalin-fixed and paraffin embedded tissue sections, and resulting in enhanced staining intensity of antibodies. Citrate has anticoagulant activity; as a calcium chelator, it forms complexes that disrupt the tendency of blood to clot. May be used to adjust pH and as a sequestering agent for the removal of trace metals. Additional forms available: Citric Acid, Anhydrous (sc-211113) Sodium Citrate, Dihydrate (sc-203383) Citric Acid Trisodium Salt (sc-214745) Sodium citrate monobasic (sc-215869) Sodium citrate tribasic hydrate (sc-236898) Citrate Concentrated Solution (sc-294091) This monograph for Citric Acid, Anhydrous, and Citric Acid, Monohydrate provides, in addition to common physical constants, a general description including typical appearance, applications, change in state (approximate), and aqueous solubility. The monograph also details the following specifications, corresponding tests for verifying that a substance meets ACS Reagent Grade specifications including: Assay, Insoluble Matter, Residue after Ignition, Chloride, Oxalate, Phosphate, Sulfur Compounds (as SO, Iron, Lead, and Substances Carbonizable by Hot Sulfuric Acid (Tartrates, etc.). Citric acid is a naturally occurring fruit acid, produced commercially by microbial fermentation of a carbohydrate substrate. Citric acid is the most widely used organic acid and pH-control agent in foods, beverages, pharmaceuticals and technical applications. Citric acid anhydrous occurs as colourless crystals or as white, crystalline powder with a strongly acidic taste. It is efflorescent in dry air, very soluble in water, freely soluble in ethanol (96 %) and sparingly soluble in ether. Citric acid anhydrous is non-toxic and has a low reactivity. It is chemically stable if stored at ambient temperatures. Citric acid anhydrous is fully biodegradable and can be disposed of with regular waste or sewage. Citric acid anhydrous is found naturally in citrus fruits, especially lemons and limes. It’s what gives them their tart, sour taste. A manufactured form of Citric acid anhydrous is commonly used as an additive in food, cleaning agents, and nutritional supplements. However, this manufactured form differs from what’s found naturally in citrus fruits. For this reason, you may wonder whether it’s good or bad for you. This article explains the differences between natural and manufactured Citric acid anhydrous, and explores its benefits, uses, and safety. What Is Citric acid anhydrous? Citric acid anhydrous was first derived from lemon juice by a Swedish researcher in 1784. The odorless and colorless compound was produced from lemon juice until the early 1900s when researchers discovered that it could also be made from the black mold, Aspergillus niger, which creates Citric acid anhydrous when it feeds on sugar. Because of its acidic, sour-tasting nature, Citric acid anhydrous is predominantly used as a flavoring and preserving agent — especially in soft drinks and candies. It’s also used to stabilize or preserve medicines and as a disinfectant against viruses and bacteria. Citric acid anhydrous is a compound originally derived from lemon juice. It’s produced today from a specific type of mold and used in a variety of applications. Natural Food Sources Citrus fruits and their juices are the best natural sources of Citric acid anhydrous. In fact, the word citric originates from the Latin word citrus. Examples of citrus fruits include: lemons, limes, oranges, grapefruits, tangerines, pomelos Other fruits also contain Citric acid anhydrous but in lesser amounts. These include: pineapple, strawberries, raspberries, cranberries, cherries, tomatoes Beverages or food products that contain these fruits — such as ketchup in the case of tomatoes — also contain Citric acid anhydrous. While not naturally occurring, Citric acid anhydrous is also a byproduct of cheese, wine, and sourdough bread production. The Citric acid anhydrous listed in the ingredients of foods and supplements is manufactured — not what’s naturally found in citrus fruits. This is because producing this additive from citrus fruits is too expensive and the demand far exceeds the supply. Lemons, limes, and other citrus fruits are the predominant natural sources of Citric acid anhydrous. Other fruits that contain much less include certain berries, cherries, and tomatoes. Artificial Sources and Uses of Citric acid anhydrous The characteristics of Citric acid anhydrous make it an important additive for a variety of industries. Food and beverages use an estimated 70% of manufactured Citric acid anhydrous, pharmaceutical and dietary supplements use 20%, and the remaining 10% goes into cleaning agents. Food Industry of Citric acid anhydrous Manufactured Citric acid anhydrous is one of the most common food additives in the world. It’s used to boost acidity, enhance flavor, and preserve ingredients. Sodas, juices, powdered beverages, candies, frozen foods, and some dairy products often contain manufactured Citric acid anhydrous. It’s also added to canned fruits and vegetables to protect against botulism, a rare but serious illness caused by the toxin-producing Clostridium botulinum bacteria. Medicines and Dietary Supplements Citric acid anhydrous is an industrial staple in medicines and dietary supplements. It’s added to medicines to help stabilize and preserve the active ingredients and used to enhance or mask the taste of chewable and syrup-based medications. Mineral supplements, such as magnesium and calcium, may contain Citric acid anhydrous — in the form of citrate — as well to enhance absorption. Disinfecting and Cleaning Citric acid anhydrous is a useful disinfectant against a variety of bacteria and viruses. A test-tube study showed that it may be effective in treating or preventing human norovirus, a leading cause of foodborne illness. Citric acid anhydrous is commercially sold as a general disinfectant and cleaning agent for removing soap scum, hard water stains, lime, and rust. It’s viewed as a safer alternative to conventional disinfectant and cleaning products, such as quat and chlorine bleach. Citric acid anhydrous is a versatile additive for food, beverages, medicines, and dietary supplements, as well as cleaning and disinfecting products. Health Benefits and Body Uses of Citric acid anhydrous Citric acid anhydrous has many impressive health benefits and functions. Metabolizes Energy Citrate — a closely related molecule of Citric acid anhydrous — is the first molecule that forms during a process called the Citric acid anhydrous cycle. Also known as the tricarboxylic acid (TCA) or Krebs cycle, these chemical reactions in your body help transform food into usable energy. Humans and other organisms derive the majority of their energy from this cycle. Enhances Nutrient Absorption Supplemental minerals are available in a variety of forms. But not all forms are created equal, as your body uses some more effectively. Citric acid anhydrous enhances the bioavailability of minerals, allowing your body to better absorb them. For example, calcium citrate doesn’t require stomach acid for absorption. It also has fewer side effects — such as gas, bloating, or constipation — than another form called calcium carbonate. Thus, calcium citrate is a better option for people with less stomach acid, like older adults. Similarly, magnesium in the citrate form is absorbed more completely and is more bioavailable than magnesium oxide and magnesium sulfate. Citric acid anhydrous also enhances the absorption of zinc supplements. May Protect Against Kidney Stones Citric acid anhydrous — in the form of potassium citrate — prevents new kidney stone formation and breaks apart those already formed. Citric acid anhydrous protects against kidney stones by making your urine less favorable for the formation of stones. Kidney stones are often treated with Citric acid anhydrous as potassium citrate. However, consuming foods high in this natural acid — like citrus fruits — can offer similar stone-preventing benefits. Safety and Risks Manufactured Citric acid anhydrous is generally recognized as safe (GRAS) by the Food and Drug Administration (FDA) . No scientific studies exist investigating the safety of manufactured Citric acid anhydrous when consumed in large amounts for long periods. Still, there have been reports of sickness and allergic reactions to the additive. One report found joint pain with swelling and stiffness, muscular and stomach pain, as well as shortness of breath in four people after they consumed foods containing manufactured Citric acid anhydrous. These same symptoms were not observed in people consuming natural forms of the acid, such as lemons and limes. Researchers acknowledged that they couldn’t prove the manufactured Citric acid anhydrous was responsible for those symptoms but recommended that its use in foods and beverages be further studied. In either case, the scientists suggested that the symptoms were most likely related to the mold used to produce the Citric acid anhydrous rather than the compound itself. The Bottom Line Citric acid anhydrous is naturally found in citrus fruits, but synthetic versions — produced from a type of mold — are commonly added to foods, medicines, supplements, and cleaning agents. While mold residues from the manufacturing process may trigger allergies in rare cases, Citric acid anhydrous is generally deemed safe. Anhydrous Citric acid anhydrous is a tricarboxylic acid found in citrus fruits. Citric acid anhydrous is used as an excipient in pharmaceutical preparations due to its antioxidant properties. It maintains stability of active ingredients and is used as a preservative. It is also used as an acidulant to control pH and acts as an anticoagulant by chelating calcium in blood. Citric acid anhydrous and its salts are naturally occurring constituents and common metabolites in plants and animal tissues. Citric acid anhydrous is an intermediary compound in the Krebs cycle linking oxidative metabolism of carbohydrate, protein and fat. The concentration of naturally occurring citrate is relatively higher in fruits, particularly citrus fruits and juices than vegetables and animal tissues. In human (as well as in animal and plant) physiology, Citric acid anhydrous is a very common intermediate in one of the central biochemical cycles, the Krebs or tricarboxylic acid cycle, which takes place in every cell. It completes the breakdown of pyruvate formed from glucose through glycolysis, thereby liberating carbon dioxide and a further four hydrogen atoms which are picked up by electron transport molecules. Thus, in man approximately 2 kg of Citric acid anhydrous are formed and metabolised every day. This physiological pathway is very well developed and capable of processing very high amounts of Citric acid anhydrous as long as it occurs in low concentrations. The NK, and to a lesser extent the NK, receptors have been shown to be involved with Citric acid anhydrous-induced bronchoconstriction in the guinea pig, which is in part mediated by endogenously released bradykinin. Tachykinins and bradykinin could also modulate Citric acid anhydrous-induced bronchoconstriction. ... Bronchoconstriction induced by Citric acid anhydrous inhalation in the guinea pig, mainly caused by the tachykinin NK receptor, is counteracted by bronchoprotective NO after activation of bradykinin B and tachykinin NK receptors in airway epithelium. A concentration of 47.6 mmol/L of Citric acid anhydrous (pH 2.3) in water led to total cell death within three minutes of incubation /with gingival fibroblasts (GF)/. Media containing 23.8 mmol/L and 47.6 mmol/L of Citric acid anhydrous exerted strong cytotoxicity (47 to 90 per cent of cell death) and inhibited protein synthesis (IC50 = 0.28 per cent) of GF within three hours of incubation. Incubation of cells in a medium containing 11.9 mmol/L of Citric acid anhydrous also suppressed the attachment and spreading of fibroblasts on culture plates and Type I collagen, with 58 per cent and 22 per cent of inhibition, respectively. Culture medium supplemented with 11.9, 23.8 and 47.6 mmol/L of Citric acid anhydrous also led to extracellular acidosis by decreasing the pH value from 7.5 to 6.3, 5.2 and 3.8, respectively. Malic acid and deferoxamine mesylate were the most effective in increasing the urinary excretion of aluminum. Citric acid anhydrous was the most effective in increasing the fecal excretion of aluminum. Malonic, oxalic and succinic acids had no overall beneficial effects. Citric acid anhydrous would appear to be the most effective agent of those tested in the prevention of acute aluminium intoxication. The entomopathogenic fungus, Beauveria bassiana, produced Citric acid anhydrouss in liquid cultures containing grasshopper (Melanoplus sanguinipes) cuticle as the sole nutrient source. Citric acid anhydrouss solubilized cuticular proteins as well as commercial preparations of elastin and collagen. Melanoplus sanguinipes treated with Beauveria bassiana showed a LT50 of 7.33 days, while Melanoplus sanguinipes treated with Citric acid anhydrous showed a LT50 of 7.25 and 13.28 days, respectively. Melanoplus sanguinipes treated with Citric acid anhydrous followed by a Beauveria bassiana conidia treatment showed a LT50 of 3.88 days. Analysis of the bioassay data revealed that the relationship between Citric acid anhydrous together with Beauveria bassiana conidia in grasshopper mortality was markedly synergistic. It is suggested that acid metabolites produced by Beauveria bassiana may play a role in cuticle solubilization and subsequent hyphal penetration. Citric acid anhydrous's production and use as an acidulant in beverages, confectionery, effervescent salts, in pharmaceutical syrups, elixirs; in processing cheese, in chemical manufacture, a foam inhibitor, a sequestering agent, a mordant, in electroplating, in special inks, an anticoagulant, and in water-conditioning agent and detergent builder may result in its release to the environment through various waste streams. Citric acid anhydrous is widely distributed in plants and in animal tissues and fluids. If released to air, a vapor pressure of 1.66X10-8 mm Hg at 25 °C indicates Citric acid anhydrous will exist solely in the particulate phase in the atmosphere. Particulate-phase Citric acid anhydrous will be removed from the atmosphere by wet and dry deposition. Citric acid anhydrous absorbs light at wavelengths up to 260 nm and, therefore, is not expected to be susceptible to direct photolysis since sunlight consists of wavelengths above 290 nm. If released to soil, Citric acid anhydrous is expected to have very high mobility based upon an estimated Koc of 10. The pKa of Citric acid anhydrous is 2.79, indicating that this compound will exist almost entirely in the anion form in the environment and anions generally do not adsorb more strongly to soils containing organic carbon and clay than their neutral counterparts. Volatilization from moist soil is not expected because the compound exists as an anion and anions do not volatilize. Citric acid anhydrous is not expected to volatilize from dry soil surfaces based upon its vapor pressure. Citric acid anhydrous reached 53% of its theoretical BOD in 5 days using a sludge inoculum, suggesting that biodegradation may be an important environmental fate process in soil. If released into water, Citric acid anhydrous is not expected to adsorb to suspended solids and sediment based upon the estimated Koc. Theoretical biodegradation values of 66.4% and 67.3% after 5 days using freshwater and seawater inoculums, respectively, indicate that biodegradation is an important environmental fate process in water. The pKa indicates Citric acid anhydrous will exist almost entirely in the anion form at pH values of 5 to 9 and, therefore, volatilization from water surfaces is not expected to be an important fate process. An estimated BCF of 3 suggests the potential for bioconcentration in aquatic organisms is low. Hydrolysis is not expected to be an important environmental fate process since this compound lacks functional groups that hydrolyze under environmental conditions (pH 5 to 9). Occupational exposure to Citric acid anhydrous may occur through dermal contact with this compound at workplaces where Citric acid anhydrous is produced or used. Monitoring data indicate that the general population may be exposed to Citric acid anhydrous via
CITRIC ACID MONOHYDRATE
Citric acid Introduction Citric Acid Monohydrate is a tricarboxylic acid found in citrus fruits. Citric acid is used as an excipient in pharmaceutical preparations due to its antioxidant properties. It maintains stability of active ingredients and is used as a preservative Functions and Applications Test Items Specification Results Characters Colourless Translucent Crystals Or As White, Fine, Crystalline Powder Colourless Translucent Crystals Or As White, Fine, Crystalline Powder Identification Pass Test Pass Test Clarity And Colour OfSolution Pass Test Pass Test Content 99.5-100.5% 100.00% Moisture 7.5-8.8% 8.70% Oxalic Acid ≤100mg/Kg <100mg/Kg Sulphate ≤150ppm <150ppm Readily Carbonisable Substances Abs ≤0.52 <0.52 Tra ≥30% >30% Residue On Ignition (Sulphated Ash) ≤0.05% 0.01% Heavy Metals ≤10ppm <5ppm Arsenic ≤1mg/Kg <0.1mg/Kg Lead ≤0.5mg/Kg <0.1mg/Kg Mercury ≤1mg/Kg <0.1mg/Kg Aluminium ≤0.2ppm <0.2ppm Bacterial Endotoxins ≤0.5Iu/Mg <0.5Iu/Mg Isociric Acid (Relative Substances) Pass Test Pass Test Polycyclic Aromatic Hydrocarbon Pass Test Pass Test Trilaurylamine ≤0.1mg/Kg <0.1mg/Kg Sterility Pass Test Pass Test Barium Pass Test Pass Test Calcium ≤200ppm <200ppm Iron ≤50ppm <50ppm Chloride ≤50ppm <50ppm Citric Acid Monohydrate is a tricarboxylic acid found in citrus fruits. Citric acid is used as an excipient in pharmaceutical preparations due to its antioxidant properties. It maintains stability of active ingredients and is used as a preservative. It is also used as an acidulant to control pH and acts as an anticoagulant by chelating calcium in blood. Citric acid monohydrate is an organic molecular entity. ChEBI Description Catalogue Number 100244 Replaces CX1725-1; CX1725-3; CX1725 Synonyms 2-Hydroxypropane-1,2,3-tricarboxylic acid, Hydroxytricarballylic acid Product Information CAS number 5949-29-1 EC number 201-069-1 Grade ACS,ISO,Reag. Ph Eur Hill Formula C₆H₈O₇ * H₂O Molar Mass 210.14 g/mol HS Code 2918 14 00 Structure formula Image Structure formula Image Quality Level MQ300 Physicochemical Information Density 1.54 g/cm3 (20 °C) Flash point 173.9 °C Not applicable Melting Point 135 - 152 °C pH value 1.85 (50 g/l, H₂O, 25 °C) Vapor pressure <1 Pa (25 °C) Bulk density 800 - 1000 kg/m3 Solubility 880 g/l Citric acid is a weak organic acid that has the molecular formula C6H8O7. It occurs naturally in citrus fruits. In biochemistry, it is an intermediate in the citric acid cycle, which occurs in the metabolism of all aerobic organisms. More than two million tons of citric acid are manufactured every year. It is used widely as an acidifier, as a flavoring and a chelating agent.[9] A citrate is a derivative of citric acid; that is, the salts, esters, and the polyatomic anion found in solution. An example of the former, a salt is trisodium citrate; an ester is triethyl citrate. Natural occurrence and industrial production Lemons, oranges, limes, and other citrus fruits possess high concentrations of citric acid Citric acid exists in a variety of fruits and vegetables, most notably citrus fruits. Lemons and limes have particularly high concentrations of the acid; it can constitute as much as 8% of the dry weight of these fruits (about 47 g/l in the juices[10]).[a] The concentrations of citric acid in citrus fruits range from 0.005 mol/L for oranges and grapefruits to 0.30 mol/L in lemons and limes; these values vary within species depending upon the cultivar and the circumstances in which the fruit was grown. Industrial-scale citric acid production first began in 1890 based on the Italian citrus fruit industry, where the juice was treated with hydrated lime (calcium hydroxide) to precipitate calcium citrate, which was isolated and converted back to the acid using diluted sulfuric acid.[11] In 1893, C. Wehmer discovered Penicillium mold could produce citric acid from sugar. However, microbial production of citric acid did not become industrially important until World War I disrupted Italian citrus exports. In 1917, American food chemist James Currie discovered certain strains of the mold Aspergillus niger could be efficient citric acid producers, and the pharmaceutical company Pfizer began industrial-level production using this technique two years later, followed by Citrique Belge in 1929. In this production technique, which is still the major industrial route to citric acid used today, cultures of A. niger are fed on a sucrose or glucose-containing medium to produce citric acid. The source of sugar is corn steep liquor, molasses, hydrolyzed corn starch, or other inexpensive, sugary solution.[12] After the mold is filtered out of the resulting solution, citric acid is isolated by precipitating it with calcium hydroxide to yield calcium citrate salt, from which citric acid is regenerated by treatment with sulfuric acid, as in the direct extraction from citrus fruit juice. In 1977, a patent was granted to Lever Brothers for the chemical synthesis of citric acid starting either from aconitic or isocitrate/alloisocitrate calcium salts under high pressure conditions; this produced citric acid in near quantitative conversion under what appeared to be a reverse, non-enzymatic Krebs cycle reaction.[13] Global production was in excess of 2,000,000 tons in 2018.[14] More than 50% of this volume was produced in China. More than 50% was used as an acidity regulator in beverages, some 20% in other food applications, 20% for detergent applications, and 10% for applications other than food, such as cosmetics, pharmaceuticals, and in the chemical industry.[citation needed] Chemical characteristics Citric acid crystals (crystallized from an aqueous solution) under a microscope. Speciation diagram for a 10-millimolar solution of citric acid Citric acid was first isolated in 1784 by the chemist Carl Wilhelm Scheele, who crystallized it from lemon juice.[15][11][16] It can exist either in an anhydrous (water-free) form or as a monohydrate. The anhydrous form crystallizes from hot water, while the monohydrate forms when citric acid is crystallized from cold water. The monohydrate can be converted to the anhydrous form at about 78 °C. Citric acid also dissolves in absolute (anhydrous) ethanol (76 parts of citric acid per 100 parts of ethanol) at 15 °C. It decomposes with loss of carbon dioxide above about 175 °C. Citric acid is normally considered to be a tribasic acid, with pKa values, extrapolated to zero ionic strength, of 2.92, 4.28, and 5.21 at 25 °C.[17] The pKa of the hydroxyl group has been found, by means of 13C NMR spectroscopy, to be 14.4.[18] The speciation diagram shows that solutions of citric acid are buffer solutions between about pH 2 and pH 8. In biological systems around pH 7, the two species present are the citrate ion and mono-hydrogen citrate ion. The SSC 20X hybridization buffer is an example in common use.[19] Tables compiled for biochemical studies[20] are available. On the other hand, the pH of a 1 mM solution of citric acid will be about 3.2. The pH of fruit juices from citrus fruits like oranges and lemons depends on the citric acid concentration, being lower for higher acid concentration and conversely. Acid salts of citric acid can be prepared by careful adjustment of the pH before crystallizing the compound. See, for example, sodium citrate. The citrate ion forms complexes with metallic cations. The stability constants for the formation of these complexes are quite large because of the chelate effect. Consequently, it forms complexes even with alkali metal cations. However, when a chelate complex is formed using all three carboxylate groups, the chelate rings have 7 and 8 members, which are generally less stable thermodynamically than smaller chelate rings. In consequence, the hydroxyl group can be deprotonated, forming part of a more stable 5-membered ring, as in ammonium ferric citrate, (NH 4) 5Fe(C 6H 4O 7) 2·2H 2O.[21] Citric acid can be esterified at one or more of the carboxylic acid functional groups on the molecule (using a variety of alcohols), to form any of a variety of mono-, di-, tri-, and mixed esters.[citation needed] Biochemistry Citric acid cycle Main article: Citric acid cycle Citrate is an intermediate in the TCA cycle (aka TriCarboxylic Acid cycle, or Krebs cycle, Szent-Györgyi), a central metabolic pathway for animals, plants, and bacteria. Citrate synthase catalyzes the condensation of oxaloacetate with acetyl CoA to form citrate. Citrate then acts as the substrate for aconitase and is converted into aconitic acid. The cycle ends with regeneration of oxaloacetate. This series of chemical reactions is the source of two-thirds of the food-derived energy in higher organisms. Hans Adolf Krebs received the 1953 Nobel Prize in Physiology or Medicine for the discovery. Some bacteria (notably E. coli) can produce and consume citrate internally as part of their TCA cycle, but are unable to use it as food because they lack the enzymes required to import it into the cell. After tens of thousand of evolutions in a minimal glucose medium that also contained citrate during Richard Lenski's Long-Term Evolution Experiment, a variant E. coli evolved with the ability to grow aerobically on citrate. Zachary Blount, a student of Lenski's, and colleagues studied these "Cit+" E. coli[22][23] as a model for how novel traits evolve. They found evidence that, in this case, the innovation was caused by a rare duplication mutation due to the accumulation of several prior "potentiating" mutations, the identity and effects of which are still under study. The evolution of the Cit+ trait has been considered a notable example of the role of historical contingency in evolution. Other biological roles Citrate can be transported out of the mitochondria and into the cytoplasm, then broken down into acetyl-CoA for fatty acid synthesis, and into oxaloacetate. Citrate is a positive modulator of this conversion, and allosterically regulates the enzyme acetyl-CoA carboxylase, which is the regulating enzyme in the conversion of acetyl-CoA into malonyl-CoA (the commitment step in fatty acid synthesis). In short, citrate is transported into the cytoplasm, converted into acetyl CoA, which is then converted into malonyl CoA by acetyl CoA carboxylase, which is allosterically modulated by citrate. High concentrations of cytosolic citrate can inhibit phosphofructokinase, the catalyst of a rate-limiting step of glycolysis. This effect is advantageous: high concentrations of citrate indicate that there is a large supply of biosynthetic precursor molecules, so there is no need for phosphofructokinase to continue to send molecules of its substrate, fructose 6-phosphate, into glycolysis. Citrate acts by augmenting the inhibitory effect of high concentrations of ATP, another sign that there is no need to carry out glycolysis.[24] Citrate is a vital component of bone, helping to regulate the size of apatite crystals.[25] Applications Food and drink Powdered citric acid being used to prepare lemon pepper seasoning Because it is one of the stronger edible acids, the dominant use of citric acid is as a flavoring and preservative in food and beverages, especially soft drinks and candies.[11] Within the European Union it is denoted by E number E330. Citrate salts of various metals are used to deliver those minerals in a biologically available form in many dietary supplements. Citric acid has 247 kcal per 100 g.[26] In the United States the purity requirements for citric acid as a food additive are defined by the Food Chemicals Codex, which is published by the United States Pharmacopoeia (USP). Citric acid can be added to ice cream as an emulsifying agent to keep fats from separating, to caramel to prevent sucrose crystallization, or in recipes in place of fresh lemon juice. Citric acid is used with sodium bicarbonate in a wide range of effervescent formulae, both for ingestion (e.g., powders and tablets) and for personal care (e.g., bath salts, bath bombs, and cleaning of grease). Citric acid sold in a dry powdered form is commonly sold in markets and groceries as "sour salt", due to its physical resemblance to table salt. It has use in culinary applications, as an alternative to vinegar or lemon juice, where a pure acid is needed. Citric acid can be used in food coloring to balance the pH level of a normally basic dye.[citation needed] Cleaning and chelating agent Citric acid is an excellent chelating agent, binding metals by making them soluble. It is used to remove and discourage the buildup of limescale from boilers and evaporators.[11] It can be used to treat water, which makes it useful in improving the effectiveness of soaps and laundry detergents. By chelating the metals in hard water, it lets these cleaners produce foam and work better without need for water softening. Citric acid is the active ingredient in some bathroom and kitchen cleaning solutions. A solution with a six percent concentration of citric acid will remove hard water stains from glass without scrubbing. Citric acid can be used in shampoo to wash out wax and coloring from the hair. Illustrative of its chelating abilities, citric acid was the first successful eluant used for total ion-exchange separation of the lanthanides, during the Manhattan Project in the 1940s. In the 1950s, it was replaced by the far more efficient EDTA. In industry, it is used to dissolve rust from steel and passivate stainless steels.[27] Cosmetics, pharmaceuticals, dietary supplements, and foods Citric acid is used as an acidulant in creams, gels, and liquids. Used in foods and dietary supplements, it may be classified as a processing aid if it was added for a technical or functional effect (e.g. acidulent, chelator, viscosifier, etc.). If it is still present in insignificant amounts, and the technical or functional effect is no longer present, it may be exempt from labeling <21 CFR §101.100(c)>. Citric acid is an alpha hydroxy acid and is an active ingredient in chemical skin peels.[citation needed] Citric acid is commonly used as a buffer to increase the solubility of brown heroin.[28] Citric acid is used as one of the active ingredients in the production of facial tissues with antiviral properties.[29] Other uses The buffering properties of citrates are used to control pH in household cleaners and pharmaceuticals. Citric acid is used as an odorless alternative to white vinegar for home dyeing with acid dyes. Sodium citrate is a component of Benedict's reagent, used for identification both qualitatively and quantitatively of reducing sugars. Citric acid can be used as an alternative to nitric acid in passivation of stainless steel.[30] Citric acid can be used as a lower-odor stop bath as part of the process for developing photographic film. Photographic developers are alkaline, so a mild acid is used to neutralize and stop their action quickly, but commonly used acetic acid leaves a strong vinegar odor in the darkroom.[31] Citric acid/potassium-sodium citrate can be used as a blood acid regulator. Soldering flux. Citric acid is an excellent soldering flux,[32] either dry or as a concentrated solution in water. It should be removed after soldering, especially with fine wires, as it is mildly corrosive. It dissolves and rinses quickly in hot water. Synthesis of solid materials from small molecules In materials science, the Citrate-gel method is a process similar to the sol-gel method, which is a method for producing solid materials from small molecules. During the synthetic process, metal salts or alkoxides are introduced into a citric acid solution. The formation of citric complexes is believed to balance the difference in individual behavior of ions in solution, which results in a better distribution of ions and prevents the separation of components at later process stages. The polycondensation of ethylene glycol and citric acid starts above 100 °С, resulting in polymer citrate gel formation. Safety Although a weak acid, exposure to pure citric acid can cause adverse effects. Inhalation may cause cough, shortness of breath, or sore throat. Over-ingestion may cause abdominal pain and sore throat. Exposure of concentrated solutions to skin and eyes can cause redness and pain.[33] Long-term or repeated consumption may cause erosion of tooth enamel. Anhydrous Citric Acid is a tricarboxylic acid found in citrus fruits. Citric acid is used as an excipient in pharmaceutical preparations due to its antioxidant properties. It maintains stability of active ingredients and is used as a preservative. It is also used as an acidulant to control pH and acts as an anticoagulant by chelating calcium in blood. Citric acid appears as colorless, odorless crystals with an acid taste. Denser than water. (USCG, 1999) Citric acid is a tricarboxylic acid that is propane-1,2,3-tricarboxylic acid bearing a hydroxy substituent at position 2. It is an important metabolite in the pathway of all aerobic organisms. It has a role as a food acidity regulator, a chelator, an antimicrobial agent and a fundamental metabolite. It is a conjugate acid of a citrate(1-) and a citrate anion. Molecular Weight of Citric Acid: 192.12 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) XLogP3 of Citric Acid: -1.7 Computed by XLogP3 3.0 (PubChem release 2019.06.18) Hydrogen Bond Donor Count of Citric Acid: 4 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Hydrogen Bond Acceptor Count of Citric Acid: 7 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Rotatable Bond Count of Citric Acid: 5 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Exact Massof Citric Acid: 192.027003 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Monoisotopic Mass of Citric Acid: 192.027003 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Topological Polar Surface Area of Citric Acid: 132 Ų Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Heavy Atom Count of Citric Acid: 13 Computed by PubChem Formal Charge of Citric Acid: 0 Computed by PubChem Complexity of Citric Acid: 227 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Isotope Atom Count of Citric Acid: 0 Computed by PubChem Defined Atom Stereocenter Count of Citric Acid: 0 Computed by PubChem Undefined Atom Stereocenter Count of Citric Acid: 0 Computed by PubChem Defined Bond Stereocenter Count of Citric Acid: 0 Computed by PubChem Undefined Bond Stereocenter Count of Citric Acid: 0 Computed by PubChem Covalently-Bonded Unit Count of Citric Acid: 1 Computed by PubChem Compound of Citric Acid Is Canonicalized Yes
CITROL
CITRONELLAL, N° CAS : 106-23-0, Nom INCI : CITRONELLAL, Nom chimique : 6-Octenal, 3,7-dimethyl-, N° EINECS/ELINCS : 203-376-6. Ses fonctions (INCI): Agent masquant : Réduit ou inhibe l'odeur ou le goût de base du produit. 3,7-Diméthyl-6-octènal; beta-Citronellal; Diméthyl-3,7 octènal-6. Noms anglais : 6-Octenal, 3,7-dimethyl-; Citronellal; Citronelal (es); Citronelalis (lt); Citronellal (cs); Citronellale (it); Citronellál (hu); Citronelāls (lv); Cytronelal (pl); Sitronellaali (fi); Tsitronellaal (et); Ċitronellal (mt); Κιτρονελλάλη (el); Цитронелал (bg); CAS names; 6-Octenal, 3,7-dimethyl- 1H-3a,7-Methanoazulen-6-ol, Octahydro-3,6,8,8,-Tetramethyl-, (3R,3aS,6R,7R,8aS)- 3,7-DIMETHYL-6-OCTEN-1-AL 3,7-Dimethyl-6-octenal 3,7-dimethyloct -6-enal 3,7-dimethyloct-6-en-1-al 3,7-dimethyloct-6-enal Citronellal;EIN & INCI, syn:6-Octenal, 3,7-dimethyl- Trade names .beta.-Citronellal 2,3-Dihydrocitral 6-Octenal, 3,7-dimethyl- (8CI, 9CI) beta-citronellal Rhodinal
CITRONELLAL
CITRONELLOL, N° CAS : 106-22-9 / 26489-01-0 / 7540-51-4 / 1117-61-9 - Citronellol, Autre langue : Citronelol, Nom INCI : CITRONELLOL, Nom chimique : 3,7-Dimethyl-6-octen-1-ol, N° EINECS/ELINCS : 203-375-0 / 247-737-6 / 231-415-7 / 214-250-5, Ses fonctions (INCI) . Agent parfumant : Utilisé pour le parfum et les matières premières aromatiques
CITRONELLOL
CITRONELLYL ACETATE, N° CAS : 150-84-5, Nom INCI : CITRONELLYL ACETATE, Nom chimique : 6-Octen-1-ol, 3,7-dimethyl-,acetate, N° EINECS/ELINCS : 205-775-0, Agent masquant : Réduit ou inhibe l'odeur ou le goût de base du produit
CITRONELLYL ACETATE
CITRUS LIMON FRUIT OIL, N° CAS : 8008-56-8 - Huile de citron, Origine(s) : Végétale, Autres langues : Aceite de limon, Lemon oil, Olio di limone, Zitronenöl, Nom INCI : CITRUS LIMON FRUIT OIL, Classification : Règlementé, Huile essentielle. Ses fonctions (INCI): Astringent : Permet de resserrer les pores de la peau: Tonifiant : Produit une sensation de bien-être sur la peau et les cheveux
CITRUS LIMON FRUIT OIL
CITRYL ACETATE, N° CAS : 16409-44-2, Nom INCI : CITRYL ACETATE, Nom chimique : 3,7-Dimethylocta-2,6-dienyl Acetate, N° EINECS/ELINCS : 240-458-0, Ses fonctions (INCI): Agent parfumant : Utilisé pour le parfum et les matières premières aromatiques
CITRYL ACETATE
BENZYL CINNAMATE, N° CAS : 103-41-3 , Cinnamate de benzyle, Nom INCI : BENZYL CINNAMATE. Nom chimique : 2-Propenoic acid, 3-phenyl, phenylmethyl ester, N° EINECS/ELINCS : 203-109-3. Agent parfumant : Utilisé pour le parfum et les matières premières aromatiques
Cinnamate de benzyle
CIRE D'ABEILLE; CIRE D'ABEILLE JAUNE; BEESWAX; BEESWAX (WHITE); BEESWAX ABSOLUTE; BEESWAX WHITE; BEESWAX YELLOW; BEESWAX, ABSOLUTE; YELLOW BEESWAX. Utilisation: Cire, fabrication de produits pharmaceutiquesCERA ALBA, N° CAS : 8012-89-3 - Cire d'Abeille, Autres langues : Beeswax, Bienenwachs, Cera d'api, Cera de abejas, Nom INCI : CERA ALBA, N° EINECS/ELINCS : 232-383-7, Additif alimentaire : E901, La cire d'abeille est sécrétée par les abeilles et permet de fabriquer les "nids", dans lesquels le miel pourra être stocké. Les deux sont récoltés en même temps par les apiculteurs, qui les séparent ensuite par gravité en les chauffant. La cire une fois récupérée est purifiée pour pouvoir être utilisée. La cire d'abeille est un corps gras utilisé en cosmétique comme épaississant ou émulsifiant. Elle dispose de propriétés protectrices et hydratantes. Elle forme un film protecteur doux sur la peau, de plus, contrairement aux cires issues du pétrole comme la paraffine ou la vaseline, si elle est formulée correctement, elle ne bouche pas les pores.Emollient : Adoucit et assouplit la peau Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile) Agent filmogène : Produit un film continu sur la peau, les cheveux ou les ongles Agent parfumant : Utilisé pour le parfum et les matières premières aromatiques. Noms français : CIRE D'ABEILLE; CIRE D'ABEILLE JAUNE. Noms anglais : BEESWAX; BEESWAX (WHITE); BEESWAX ABSOLUTE; BEESWAX WHITE; BEESWAX YELLOW; BEESWAX, ABSOLUTE; YELLOW BEESWAX. Utilisation: Cire, fabrication de produits pharmaceutiques
Cire d'Abeille ( BEESWAX )
LANOLIN CERA, N° CAS : 68201-49-0 - Cire de lanoline, Autres langues : Cera de lanolina, Cera di lanolina, Lanolin wax, Lanolinwachs. Nom INCI : LANOLIN CERA. N° EINECS/ELINCS : 269-220-4. Ses fonctions (INCI). Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface. Agent fixant : Permet la cohésion de différents ingrédients cosmétiques Emollient : Adoucit et assouplit la peau. Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile) Agent filmogène : Produit un film continu sur la peau, les cheveux ou les ongles. Sinergiste de mousse : Améliore la qualité de la mousse produite en augmentant une ou plusieurs des propriétés suivantes: volume, texture et / ou stabilité. Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance Agent d'entretien de la peau : Maintient la peau en bon état. Principaux synonymes. Noms français : CIRE DE LANOLINE. Noms anglais : DE-OILED LANOLIN; LANOLIN WAX; LANOLIN, WAX WAXES, LANOLIN. Utilisation et sources d'émission : Produit organique, fabrication de cosmétiques
Cire de lanoline
ERA MICROCRISTALLINA, N° CAS : 63231-60-7 64742-42-3 - Cire de paraffine, Autres langues : Cera parafina, Paraffin wax, Paraffina, Paraffinwachs, Nom INCI : CERA MICROCRISTALLINA Nom chimique : Microcristallina Cera Microcrystalline Wax (U.S.), N° EINECS/ELINCS : 264-038-1 265-144-0. Cette cire de type plastique est hautement raffinée. Elle est dérivée du pétrole et purifiée pour une utilisation en cosmétique. Dans les produits cosmétiques elle est utilisée comme épaississant et pour donner aux produits une texture lisse semi-solide à solide. Elle est interdite en Bio. Agent fixant : Permet la cohésion de différents ingrédients cosmétiques Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion Opacifiant : Réduit la transparence ou la translucidité des cosmétiques Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques
Cire de paraffine
PROPOLIS CERA, N° CAS : 85665-41-4 - Cire de propolis (issu de la ruche), Origine(s) : Animale. Nom INCI : PROPOLIS CERA. N° EINECS/ELINCS : 288-130-6. Ses fonctions (INCI). Anti-séborrhée : Aide à contrôler la production de sébum. Hydratant : Augmente la teneur en eau de la peau et aide à la maintenir douce et lisse. Agent lissant : Diminue la rugosité ou les irrégularités pour rendre la peau uniforme
Cire de propolis (issu de la ruche)
ZINC CITRATE N° CAS : 546-46-3 - Citrate de Zinc "Satisfaisant" dans toutes les catégories. Origine(s) : Végétale, Synthétique Nom INCI : ZINC CITRATE Nom chimique : Trizinc dicitrate N° EINECS/ELINCS : 208-901-2 Classification : Règlementé. Le citrate de Zinc est principalement utilisé dans les produits d'hygiène bucco-dentaires en tant qu'agent antimicrobiens. Il agit particulièrement bien avec du Triclosan (bien que cet ingrédient soit particulièrement controversé, et suspecté d'être un perturbateur endocrinien). C'est aussi un actif contre le tartre qui peut venir appuyer l'action du fluor. Compatible Bio (Référentiel COSMOS). Ses fonctions (INCI) Antiplaque : Aide à protéger contre la formation de plaque dentaire Agent d'hygiène buccale : Fournit des effets cosmétiques à la cavité buccale (nettoyage, désodorisation et protection)
Citrate de Zinc ( ZINC CITRATE)
2-Hydroxy-1,2,3,propane-tricarboxylic acid monohydrate; Hydrous citric acid; 2-Hydroxytricarballylic acid monohydrate; Citric acid hydrate; Citric acid monohydrate; Acidum citricum monohydricum CAS NO: 5949-29-1
Citric acid
Nom UICPA acide 2-hydroxypropane-1,2,3-tricarboxylique. Synonymes : acide 3-carboxy-3-hydroxypentanedioïque. No CAS : 77-92-9 (anhydre), cas no: 5949-29-1 (monohydrate), No CE 201-069-1. L'acide citrique est un additif alimentaire (numéro E33023) préparé industriellement par fermentation fongique et utilisé dans l'industrie alimentaire comme acidifiant (soda, bonbons acidulés ), correcteur d’acidité, agent de levuration, dans la composition d'arôme. E330 est biosynthétisé par des micro-organismes (moisissures comme Aspergillus niger) cultivés sur un substrat contenant habituellement de la mélasse et/ou du glucose. Les micro-organismes peuvent avoir été modifiés génétiquement pour augmenter le rendement. Peut être utilisé dans les boissons gazeuses sous forme de citrate de magnésium Mg3(C6H5O7)2, 4H2O.Produits cosmétiques et pharmaceutiques. Le citrate se lie au calcium sanguin, ce dernier étant nécessaire, entre autres, à la coagulation sanguine. Ceci est à l'origine de ses propriétés anticoagulantes, employées en laboratoire et pour la conservation des produits sanguins. Le citrate est utilisé en épuration extra-rénale continue en tant qu'anticoagulant régional dans le circuit d'épuration et surtout le filtre. Cette propriété est basée sur la chélation du calcium ionisé et rend nécessaire d'administrer du calcium en supplément. Le citrate est aussi utilisé sous forme de citrate de potassium ou de sodium pour l’alcalinisation des urines et la prévention des calculs urinaires, en particulier en cas d'hypocitraturie où leur utilisation réduit le risque de récidive de lithiases calciques en inhibant la croissance des calculs d'oxalate de calcium et de phosphate de calcium. Toutefois, du fait de ses effets secondaires, ce traitement n'est que peu toléré sur le long terme et on lui préfère souvent l’absorption de deux verres de jus d'orange par jour. 1,2,3-Propanetricarboxylic acid, 2-hydroxy-; 1,2,3-Propanetricarboxylic acid, 2-hydroxy-, monohydrate; 2-Hydroxy-1,2,3-propanetricarboxylic acid; 2-hydroxypropane-1,2,3-tricarboxylic acid hydrate; 2-Hydroxypropanetricarboxylic acid; 2-Hydroxytricarballylic acid; 3-Carboxy-3-hydroxypentane-1,5-dioic acid; Aciletten; Anhydrous citric acid; Chemfill; Citretten; Citric acid hydrate; CITRIC ACID MONOHYDRATE; Citric acid, anhydrous; Citric acid, monohydrate; Citro; Hydrocerol A; Kyselina 2-hydroxy-1,2,3-propantrikarbonova; Kyselina citronova. Translated names; Acid citric (ro); Acide citrique (fr); Acido citrico (it); Aċidu ċitriku (mt); Citric acid (no); Citrinų rūgštis (lt); Citroenzuur (nl); Citromsav (hu); Citronensäure (de); Citronska kislina (sl); Citronskābe (lv); Citronsyra (sv); citronsyre (da); Kwas cytrynowy (pl); kyselina citronová (cs); kyselina citrónová (sk); Limunska kiselina (hr); Sidrunhape (et); Sitruunahappo (fi); Ácido cítrico (es); Κιτρικό οξύ (el); Лимонена киселина (bg). : 2-hydorxypropane-1,2,3-tricarboxylic acid; 2-hydroxy -1,2,3 propane tricarboxylic acid; 2-hydroxy-1,2,3-propane tricarboxylic acid;2-hydroxy-1,2,3-propanetricarboxylic acid monohydrate; 2-Hydroxypropan-1,2,3-tricarbonsäure; 2-HYDROXYPROPANE-1, 2, 3-TRICARBOXYLIC ACID; 2-hydroxypropane-1,2,3-tricarboxylic; 2-hydroxypropane-1,2,3-tricarboxylic; 2-Hydroxypropane-1,2,3-tricarboxylic acid; 2-hydroxypropane-1,2,3-tricarboxylic acid anhydrous; 2-Hydroxypropane-1,2,3-tricarboxylic acid, Hydroxytricarballylic acid; 2-hydroxypropane-1,2,3-tricarboxylic acid; 2-hydroxypropane-1,2,3-tricarboxylic acid;hydrate; 2-hydroxypropane-1,2,3-trioic acid; 2-hydroxypropane-l,2,3-tricarboxylic acid; 2-hydroxypropane.1,2,3-tricaboxylic; 3-carbossi-3-idrossi-1,5-pentandioic acid; 3-carboxy-3-hydroxy pentanedioic acid; 3-Carboxy-3-hydroxypentanedioic acid; 3-hydroxy-1,2,3-propanetricarboxylic acid, anhydrous; 3-hydroxy-3-carboxy-1,5-pentanedioic acid; 3-hydroxy-3-carboxy-1,5-pentanedioic acid.; 3-hydroxy-3-carboxy-1,5-pentaneioicacid; acido 3-carbossi-3-idrossi-1,5-pentandioico; acido citrico anidro; Anhydrous form: 2-hydroxypropane-1,2,3-tricarboxylic acid; Monohydrated form: 1,2,3-Propanetricarboxylic acid, 2-hydroxy-, monohydrate; CITRIC ACID ANHYDROUS; citric acid; 3-hydroxy-3-carboxy-1,5-pentanedioic acid;citric acid ; CITROMSAV-MONOHIDRÁT; Citronensäure, wasserfrei; hydroxypropene - 1,2,3 - tricarboxylic; Acide citrique; ACIDO CITRICO MONOIDRATOCITRIC ACID; Citric Acid Anhydrous; Citric Acid Monohydrate; Citronensäure-Monohydrat; Ácido citrico; ACIDO CITRICO MONOIDRATO; Citronensäure-Monohydrat; Ácido citrico
Citrus terpenes
Ses fonctions (INCI) Agent Absorbant : Absorbe l'eau (ou l'huile) sous forme dissoute ou en fines particules Agent fixant : Permet la cohésion de différents ingrédients cosmétiques Agent de foisonnement : Réduit la densité apparente des cosmétiques Agent d'entretien de la peau : Maintient la peau en bon état Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques
CLAY
1-(p-chlorophenoxy)-3,3-dimethyl-1-(1-imidazolyl)-2-Butanone; 1-(4-Chlorophenoxy)-1-(imidazol-1-yl)-3,3-dimethylbutanone; Baypival; Baysan; 1-(p-Chlorophenoxy)-3,3-dimethyl-1-(1-imidazolyl)-2-butanone; Climbazol CAS NO:38083-17-9
CLIMBAZOLE
CLIMBAZOLE, N° CAS : 38083-17-9, Origine(s) : Synthétique, Nom INCI : CLIMBAZOLE, Nom chimique : 2-Butanone, 1-(4-chlorophenoxy)-1-(1H-imidazol-1-yl)-3,3-dimethyl-, N° EINECS/ELINCS : 253-775-4. Le climbazole est un antifongique topique souvent utilisé dans le traitement des infections fongiques cutanées chez l'homme, telles que les pellicules et l'eczéma. Ses fonctions (INCI) Antimicrobien : Aide à ralentir la croissance de micro-organismes sur la peau et s'oppose au développement des microbes. Conservateur : Inhibe le développement des micro-organismes dans les produits cosmétiques.. Antipelliculaire : Aide à lutter contre les pellicules
COBALT ACETATE
SYNONYMS Cobaltous chloride hexahydrate; Kobalt chlorid; Cobalt muriate; Cobalt(II) chloride hexahydrate; Cobaltous dichloride hexahydrate; Dichlorocobalt;CAS NO. 7646-79-9 (Anhydrous) 7791-13-1 (Hexahydrate)
COBALT CHLORIDE
SYNONYMS Cobaltous hydroxide; Cobalt dihydroxide; Cobalt(II) hydroxide; Cobalt(2+) hydroxide; CAS NO. 21041-93-0 (dihydroxide) 1307-86-4 (trihydroxide)
COBALT HYDROXIDE
SYNONYMS Cobalt bis(nitrate); Cobalt dinitrate; Cobalt(2+) nitrate; Cobaltous nitrate; Cobalt(II) nitrate;Nitric acid, cobalt(2+) salt; CAS NO. 10141-05-6, 14216-74-1 (Anhydrous) 10026-22-9 (hexahydrate)
COBALT NITRATE
Cobalt (II) 2-Ethylhexanoate; cobalt bis(2-ethylhexanoate); Bis(2-etilhexanoato) de cobalto; 2-Ethylhexanoic acid, Cobalt salt; Bis(2-éthylhexanoate) de cobalt; COBALT 2-ETHYLHEXANOATE; COBALT 2-ETHYLHEXOATE; COBALT(II) 2-ETHYLHEXANOATE; COBALT(II) OCTYLATE; COBALT OCTOATE; Cobalt(II) 2-ethylhexanoate solution; Cobalt Octaote; COBALT(II) 2-ETHYLHEXANOATE, 65 WT. % SO LUTION IN MINERAL SPIRITS; Cobaltousoctanoate; Cobalt2-ethylhexanoate,~65%inmineralspirits(12%Co); 2-ETHYLHEXANOICACID,COBALT(II)SALT; Cobaltbis(2-ethylhexanoat); 65% IN MINERAL SPIRITS (12% CO); Cobaltous 2-ethylhexanoate; Cobalt bis(2-ethylhexanoate); cobalt(II) octoate; 2-(Dimethylamino)bromobenzene; 2-(Dimethylamino)phenyl bromide; 2-(N,N-Dimethylamino)bromobenzene; Cobaltous octoate CAS NO:136-52-7
COBALT OCTOATE
SYNONYMS Cobalt (II) Sulfate heptahydrate;Bieberite; Cobalt(II) Sulfate (1:1) Heptahydrate; Cobaltous sulfate, heptahydrate; Cobalt monosulfate, heptahydrate; Sulfuric acid, cobalt salt, heptahydrate; sulfuric acid, cobalt(2+) salt (1:1), heptahydrate; cas no: 10124-43-3
Cobalt Sulfate
COBALT(+2)SULFATE HEPTAHYDRATE COBALT(II) SULFATE COBALT(II) SULFATE-7-HYDRATE COBALT(II) SULFATE HEPTAHYDRATE COBALT (II) SULFATE, HYDROUS COBALT(II) SULPHATE 7-HYDRATE COBALT(II) SULPHATE HEPTAHYDRATE COBALTOUS SULFATE COBALTOUS SULFATE HEPTAHYDRATE COBALTOUS SULPHATE COBALTOUS SULPHATE 7H2O COBALTOUS SULPHATE 7-HYDRATE COBALT SULFATE COBALT SULFATE, 7-HYDRATE COBALT SULFATE HEPTAHYDRATE Cobalt(II)sulfate(1:1),heptahydrate Cobaltmonosulfateheptahydrate Sulfuricacid,cobalt(2+)salt(1:1),heptahydrate Cobalfous sulfate bieberite CAS :10026-24-1
COCAMIDE
Coconut Oil Acid Diethanolamine Condensate; Coconut fatty acid amide of diethanolamine; Coconut diethanolamide; Cocamide DEA; coconut oil diethanolamine; n,n-Bis(2-hydroxyethyl) cocoamide; n,n-Bis(2-hydroxyethyl) coconut fatty acid amide; n,n-Bis(2-hydroxyethyl) coconut oil amide; Coconut fatty acids diethanolamide; Coconut oil acids diethanolamide; Coconut oil acids, diethanolamine; Coconut oil diethanolamide; Coconut oil fatty acid diethanolamide; Coconut oil fatty acids diethanolamide; coco-n,n-Bis(hydroxyethyl)amides; N,N-bis(hydroxyethyl)coco amides; n,n-bis(hydroxyethyl) coco fatty amides; coconut oil acid diethanolamine; cocamide diethanolamine; Diethanolamides of the fatty acids of coconut oil CAS NO:68603-42-9
COCAMIDE DEA
Coconut Oil Acid Diethanolamine Condensate; Coconut fatty acid amide of diethanolamine; Coconut diethanolamide; Cocamide DEA; coconut oil diethanolamine; n,n-Bis(2-hydroxyethyl) cocoamide; n,n-Bis(2-hydroxyethyl) coconut fatty acid amide; n,n-Bis(2-hydroxyethyl) coconut oil amide; Coconut fatty acids diethanolamide; Coconut oil acids diethanolamide; Coconut oil acids, diethanolamine; Coconut oil diethanolamide; cas no: 68603-42-9
COCAMIDE DIPA
Monoethanolamine coconut acid amide; Coco monoethanolamide; Coconut fatty acid monoethanolamide; Cocoyl monoethanolamine; N-(2-Hydroxyethyl) coco fatty acid amide; Coconut oil fatty acid ethanolamide; Amides, coco, N-(hydroxyethyl) cas no: 68140-00-1
COCAMIDE MEA
COCAMIDE MEA, N° CAS : 68140-00-1, Origine(s) : Végétale, Synthétique, Nom INCI : COCAMIDE MEA, N° EINECS/ELINCS : 268-770-2 ,Le cocamide MEA est un composé synthétisé à partir d'huile de coco et d'éthanolamine. C'est un tensioactif non ionique utilisé pour venir compléter l'action des anioniques. Il sert aussi d'agent émulsifiant dans les cosmétiques.Ses fonctions (INCI) Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile) Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion Sinergiste de mousse : Améliore la qualité de la mousse produite en augmentant une ou plusieurs des propriétés suivantes: volume, texture et / ou stabilité Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques. (1Z)-N-(2-Hydroxyethyl)dodecanimidic acid (1Z)-N-(2-Hydroxyethyl)dodecanimidsäure [German] 142-78-9 [RN] 205-560-1 [EINECS] Acide (1Z)-N-(2-hydroxyéthyl)dodécanimidique [French] Dodecanamide, N-(2-hydroxyethyl)- [ACD/Index Name] Dodecanimidic acid, N-(2-hydroxyethyl)-, (1Z)- [ACD/Index Name] Lauric acid monoethanolamide Lauric monoethanolamide N-(2-Hydroxyethyl)dodecanamid [German] N-(2-Hydroxyethyl)dodecanamide N-(2-Hydroxyéthyl)dodécanamide [French] N-lauroylethanolamine 1:1 Cocamide MEA 1:1 Lauramide MEA 2-Dodecanamidoethanol 68140-00-1 [RN] Ablumide LME Alkamide L-203 Amisol LDE Amisol LME Amisol LME; Comperlan LM; Copramyl; Crillon LME; Cyclomide LM; Lauramide MEA; Lauridit LM; Rewomid L 203; Rolamid CM; Stabilor CMH; Steinamid L 203; Ultrapole H; Vistalan Cocamide MEA Cocomonoethanolamide COCONUT OIL MONOETHANOLAMIDE Comperlan LM Copramyl Crillon L.M.E. Crillon LME Cyclomide LM Dodecanamide, N-2-hydroxyethyl- dodecanoyl ethanolamide Dodecylethanol amide EINECS 205-560-1 Empilan LME Hartamide LMEA Incromide LCL LAURAMIDE MEA Lauramide Monoethanolamide Lauramide-MEA (1:1) Lauric acid ethanolamide lauric acid monoethanolamide 95% LAURIC ACID MONOETHANOLAMINE Lauric N-(2-hydroxyethyl)amide LAURICACIDMONOETHANOLAMIDE Lauricethylolamide Lauridit LM Lauroyl monoethanolamide lauroyl-EA Lauroylethanolamide lauroyl-ethanolamine Lauryl monoethanolamide Laurylamidoethanol LAURYLETHANOLAMIDE Mackamide LMM Monoethanolamine lauric acid amide N-(2-Hydroxyethyl)dodecaneamide N-(2-HYDROXYETHYL)LAURAMIDE N-(dodecanoyl)ethanolamine N-(dodecanoyl)-ethanolamine N-dodecanoylethanolamine Rewomid L 203 Rolamid CM Stabilor C.M.H. Stabilor CMH Steinamid L 203 Ultrapole H Vistalan
COCAMIDE MIPA
Nom INCI : COCAMIDOETHYL BETAINE Classification : Ammonium quaternaire, Tensioactif amphotère Ses fonctions (INCI) Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface Agent nettoyant : Aide à garder une surface propre Sinergiste de mousse : Améliore la qualité de la mousse produite en augmentant une ou plusieurs des propriétés suivantes: volume, texture et / ou stabilité Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques
COCAMIDOETHYL BETAINE
Cocoyl Amide Propyldimethyl Glycine; N-(3-Cocoamidopropyl)-N,N-dimethyl-N-carboxymethylammonium hydroxide, inner salt; N-(3-Cocoamidopropyl)-N,N-dimethyl-N-carboxymethyl betaine; 1-Propanaminium, 3-amino-N-(carboxymethyl)-N,N-dimethyl-, N-coco acyl derivs., hydroxides, inner salts; N-Cocamidopropyl-N,N-dimethylglycine, hydroxide, inner salt; cas no: 61789-40-0
COCAMIDOPROPYL HYDROXYSULTAINE
COCAMINE, N° CAS : 61788-46-3, Nom INCI : COCAMINE, N° EINECS/ELINCS : 262-977-1, Ses fonctions (INCI): Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface. Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile)
COCAMINE
COCAMINE OXIDE,Oxydes de coco alkyldiméthylamines; N° CAS : 61788-90-7, Nom INCI : COCAMINE OXIDE, N° EINECS/ELINCS : 263-016-9/931-341-1, Ses fonctions (INCI): Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface. Agent nettoyant : Aide à garder une surface propre, Sinergiste de mousse : Améliore la qualité de la mousse produite en augmentant une ou plusieurs des propriétés suivantes: volume, texture et / ou stabilité. Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance. Hydrotrope : Augmente la solubilité d'une substance qui est peu soluble dans l'eau. Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Oxydes de coco alkyldiméthylamines Noms anglais :AMINES, COCO ALKYLDIMETHYL, OXIDES
COCAMINE OXIDE
Lauramide DEA, the major component of cocamide DEA; ethylanld;ninol2012e;nci-c55312;COCAMIDE DEA;clindrol200cgn; clindrol202cgn; COCO DIETHANOLAMIDE; coconutdiethanolamine; COCONUT DIETHANOLAMIDE; clindrolsuperamide; Coconutoildiethanolamide; Coconut oil alkanolamide; Coconutoil,diethanolamide; Coconutacid,diethanolamide; COCOFATTYACIDDIETHANOLAMINE; Coconut diethanolaMide (CDEA); COCAMIDE DIETHANOLAMINE (DEA); Coconutoilacid,diethanolamide; Coconutoilacidsdiethanolamide; Coconutoilacids,diethanolamide; Coco fatty acid diethanolamide; Palm Kernel Oil Dieathanolamide; Coconutfattyacidsdiethanolamide ;coconut oil acid diethanolamine; N,N-Bis(hydroxyethyl)coco amides; N,N-BIS(2-HYDROXYETHYL)COCOAMIDE; Coconutoilfattyaciddiethanolamide; Amides,coco,N,N-bis(hydroxyethyl); Coconutoilfattyacid,diethanolamide; Coconutoilfattyacidsdiethanolamide; Coconutoilfattyacids,diethanolamide; COCONUT OIL AMIDE OF DIETHANOLAMINE; amides,coco,n,n-bis(2-hydroxyethyl); coconutoilaciddiethanolamine(con2/1); Coconutfattyacidamideofdiethanolamine; Amide, Kokos-, N,N-Bis(hydroxyethyl)-; n,n-bis(hydroxyethyl)coco fatty amides; N,N-bis(2-Hydroxyethyl)coconutoilamide; N,N-bis(2-hydroxyethyl)-Coconutoilamide; Coconut oil acid-diethanolamine condensate; coconutoilaciddiethanolaminecondensate(2/1); n,n-bis(2-hydroxyethyl)coconutfattyacidamide CAS NO:68603-42-9
Cocamide propyl betaine
N° CAS : 61789-40-0 ,Bétaïne de cocamidopropyle (CAPB), Cocamidopropil betaína, Cocamidopropylbetain, La Bétaïne de cocamidopropyle ou CAPB est en tensioactif de type amphotère souvent utilisé dans les gels douches et shampoings en tant que TA secondaire.La bétaïne de cocamidopropyle (Cocamidopropyl betaïne, en nomenclature INCI) est un tensioactif dérivé de l'huile de noix de coco et de la diméthylaminopropylamine. Elle est utilisée dans de nombreux produits nettoyants, dont les gels douche et shampooings pour ses propriétés peu irritantes en comparaison à d'autres agents de surface. Il vient adoucir des tensioactifs plus agressifs comme les anioniques sulfatés de type Sodium Laureth Sulfate ou encore Sodium Lauryl Sulfate. Ce tensioactif est fabriqué à partir de dérivé d'huile de noix de coco et de la diméthylaminopropylamine, ce qui n'en fait pas un composé naturel.Ses fonctions (INCI) Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface. Agent nettoyant : Aide à garder une surface propre. Sinergiste de mousse : Améliore la qualité de la mousse produite en augmentant une ou plusieurs des propriétés suivantes: volume, texture et / ou stabilité. Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance. Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques. Cocamidopropyl Betaine; Coco amido propil betaina; cocoamido propyl betaine; Cocoamidopropyl Betaine; COCOAMIDOPROPYLBETAINE; Cocobetaine; Oxid Cocoamidipropildimetilamine; Propanaminium, 3-amino-N-(carboxymethyl)-N,N-dimethyl-, N-coco acyl derivs., hydroxides, inner salts; sodium 2-[dodecyl(dimethyl)azaniumyl]acetate chloride; {[3-(Dodecanoylamino)propyl](dimethyl)ammonio}acetate
Cocamidopropyl Betaine
Amides, coco, N-[3-(dimethylamino)propyl], N-oxides; Amides, coco, N-(3-(dimethylamino)propyl), N-oxide; Cocamidopropylamine oxide Coco amides, N-(3-(dimethylamino)propyl), N-oxide; N-(3-(Dimethylamino)propyl)coco amides-N-oxide; 3-(N,N-Dimethylamino)propyl cocoamido amine oxide; 3-Cocoamidopropyl dimethylamine oxide; Cocamidopropyldimethylamine oxide Cocoamido-3-propyldimethylamine oxide; N,N-Dimethyl-N-(3-(coconut oil alkyl)amidopropyl)amine oxide; N,N-Dimethyl-N-(3-cocamidopropyl)amine oxide; N-(3-(Dimethylamino)propyl) coco amides N-oxides; N-(Cocoamidopropyl)-N,N-dimethylamine, oxide; Amides, coco, N-(3-(dimethylamino)propyl), N-oxides CAS NO:68155-09-9
Cocamidopropylamine oxide
Nom INCI : COCETH-10 Classification : Composé éthoxylé Ses fonctions (INCI) Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile) Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
COCETH-10
COCETH-20 N° CAS : 61791-13-7 Nom INCI : COCETH-20 Classification : Composé éthoxylé Ses fonctions (INCI) Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile) Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
COCETH-20
COCETH-3 N° CAS : 61791-13-7 Nom INCI : COCETH-3 Classification : Composé éthoxylé Ses fonctions (INCI) Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile) Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
COCETH-3
COCETH-6 N° CAS : 61791-13-7 Nom INCI : COCETH-6 Classification : Composé éthoxylé Ses fonctions (INCI) Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile) Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
COCETH-6
COCETH-7 N° CAS : 61791-13-7 Nom INCI : COCETH-7 Classification : Composé éthoxylé Ses fonctions (INCI) Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile) Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
COCETH-7
Amines, coco alkyl, ethoxylated; Ethoxylated cocoamines; Cocoamine, ethoxylated; PEG-n Cocamine; Polyethylene glycol (n) coconut amine; 2-Hydroxyethyl coco amine, ethoxylated; (Coconut oil alkyl)amine, ethoxylated; Polyoxyethylene (n) coconut amine CAS NO:61791-14-8
Coco Amine Ethoxylate
Amines, coco alkyl, ethoxylated; Ethoxylated cocoamines; Cocoamine, ethoxylated; PEG-n Cocamine; Polyethylene glycol (n) coconut amine; 2-Hydroxyethyl coco amine, ethoxylated; (Coconut oil alkyl)amine, ethoxylated; Polyoxyethylene (n) coconut amine CAS NO:61791-14-8
COCO CAPRYL CAPRYLATE
Coco Dietanolamine; Coconut Oil Acid Diethanolamine Condensate; Coconut fatty acid amide of diethanolamine; Coconut diethanolamide; Cocamide DEA; coconut oil diethanolamine; n,n-Bis(2-hydroxyethyl) cocoamide; n,n-Bis(2-hydroxyethyl) coconut fatty acid amide; n,n-Bis(2-hydroxyethyl) coconut oil amide; Coconut fatty acids diethanolamide; cas no: 68603-42-9
COCO CAPRYLATE
COCO CAPRYLATE coco caprylate/caprate Rating: GOOD Categories: Emollients, Skin-Softening Coco caprylate/caprate is made by combining esters from coconut-derived fatty alcohol (the non-drying kind) with caprylic and capric acids, also from coconut. It may be plant-derived or synthetic- It is used the natural form--and functions as a lightweight emollient. Along with providing emollient benefit, this ingredient can also help solubilize other cosmetic ingredients. It is considered safe as used in cosmetics. Coco Caprylate /Caprate is a straight, unbranched wax ester made of C12-C18 coconut fatty alcohol and a defined blend of fractionated fatty acids of vegetable origin. A non-oily character and excellent compatibility make it the right choice for a wide range of personal care and cosmetic applications especially for replacing Silicone oils while maintaining their elegant light skin feel. It is considered a true vegetable alterna­tive for light petrochemical based emollients like IPM, mineral oils or silicones (e.g. D5). Coco Caprylate /Caprate is one of the fastest spreading natural emollients. It decreases heavy and greasy skin feel of slow spreading oils and will benefit the formulation with a long-lasting care effect. It can be easily incorporated in emulsion formulations by simply adding it to the oil phase in hot or cold processes. The pH value of the final formulation should range between pH 4 and 8. Cosmetic Functions: Coco Caprylate /Caprate acts as an emollient and leaves a light, non-oily smooth and velvet skin sensation. It is very popular as a natural alternative to light silicones and mineral oils. It has a similar skin sensation like Cyclomethicone or light Dimethicone types. Applications: Eye creams Skin creams Body lotions Sun protection products Massage products Micellar Water Make-up Remover INCI: Coco Caprylate /Caprate Appearance: Slightly yellowish, transparent liquid Odor: Characteristic fatty Refraction Index (nD20)* 1.443 -1.447 Density (20°C)* 0.850 -0.870 g/ml Acid value ≤ 0.5 mg KOH/g Saponification value 160-173 mg KOH/g Iodine value ≤ 1 g I/100 Hydroxyl value ≤ 5 mg KOH/g Water content ≤ 0.1 % Suggested Usage Rates: 2-25% Storage: Protected from direct light and humidity at a temperature of 50°-77°F (10°-25°C) Shelf life: 24 months, properly stored, in sealed container. This product should be added to a formulation at the recommended usage rate. What Is Coco Caprylate Doing In My Natural Skin Care Products? Why is Coco Caprylate in skin care and cosmetics? When I formulated my natural skin care line, I not only researched ingredients-I also studied what we love about our favorite moisturizers in the first place. Of course, the best moisturizer for dry skin has to have emollients that hydrate and replenish moisture-while minimizing moisture loss-but it also should feel silky and smooth on your skin. It's All In the Feel. Oils are fantastic emollients, but the fact is we don't like feeling too oily. So beyond functionality, I also learned that we prefer lotions and conditioners that feel silky, glide on and spread easily across our skin. That silky, gliding feel is called "slip"-and this is where a little chemistry comes into play, which is a good thing, because chemistry is a part of everything in life. And in this case, we really should think of it as green technology: Coco Caprylate /caprate is a skin-conditioning agent naturally derived from coconut oil to provide high hydration, superb spreadability and elegant slip. Function & Results Are Foremost in Formulating Eu2Be Of course, there are cheaper and less natural ways to get that silky feel, but Coco Caprylate is a wonderfully natural alternative with an un-natural sounding name. I love it for its bio-compatibility with human skin, and it was really the only path for me in formulating Eu2Be. The sensory-and even sensual-experience is one of the key benefits of a good skin care ritual, and Coco Caprylate gives us that light, silky feel we want from our skin care products. Plus, it penetrates the skin surface and helps with skin regeneration. One reason that beauty editors, green bloggers and customers alike give us high marks in skin moisturizer reviews, is the feel that Coco Caprylate gives them. When it comes to choosing lotions, looking for good, wholesome ingredients is a must-but we also want a luxurious, long-lasting experience, and Coco Caprylate /caprate delivers the goods. If you like our POV, join the thousands who enjoy our occasional emails packed with essential bare skin care tips, product news and inspiring ideas for wellness. Coco Caprylate /Caprate Natural based Emollient Fast Spreading Non-Oily skin feel Coco Caprylate /Caprate is a straight, unbranched wax ester made of C12-C18 coconut fatty alcohol and a defined blend of fractionated fatty acids of vegetable origin. A non-oily character and excellent compatibility make it the right choice for a wide range of personal care and cosmetic applications especially for replacing Silicone oils while maintaining their elegant light skin feel. It is considered a true vegetable alterna­tive for light petrochemical based emollients like IPM, mineral oils or silicones (e.g. D5). Coco Caprylate /Caprate is one of the fastest spreading natural emollients. It decreases heavy and greasy skin feel of slow spreading oils and will benefit the formulation with a long-lasting care effect. It can be easily incorporated in emulsion formulations by simply adding it to the oil phase in hot or cold processes. The pH value of the final formulation should range between pH 4 and 8. Cosmetic Functions: Coco Caprylate /Caprate acts as an emollient and leaves a light, non-oily smooth and velvet skin sensation. It is very popular as a natural alternative to light silicones and mineral oils. It has a similar skin sensation like Cyclomethicone or light Dimethicone types. Applications: Eye creams Skin creams Body lotions Sun protection products Massage products Micellar Water Make-up Remover INCI: Coco Caprylate /Caprate Appearance: Slightly yellowish, transparent liquid Odor: Characteristic fatty Refraction Index (nD20)* 1.443 –1.447 Density (20°C)* 0.850 –0.870 g/ml Acid value ≤ 0.5 mg KOH/g Saponification value 160-173 mg KOH/g Iodine value ≤ 1 g I/100 Hydroxyl value ≤ 5 mg KOH/g Water content ≤ 0.1 % Coco Caprylate /CAPRATE Coco Caprylate /CAPRATE is classified as : Emollient Skin conditioning COSING REF No: 75266 Chem/IUPAC Name: Alcohols, coco, mixed esters with octanoic and decanoic acids A clear, colorless to slightly yellowish oil that makes the skin nice and smooth (emollient), spreads easily on the skin and is marketed as a good alternative to volatile (does not absorb into the skin but rather evaporates from it) silicones like Cyclomethicone. Coco Caprylate / CAPRATE INCI: Coco Caprylate /Caprate Extraction: a vegetable ingredient obtained from coconut. Benefits: presents a high level of biocompatibility with skin and therefore has the ability to penetrate deep and help skin to repair itself. It acts as an emollient and provides skin with incredible softness.
Coco Dietanolamine
Coconut Oil Acid Diethanolamine Condensate; Coconut fatty acid amide of diethanolamine; Coconut diethanolamide; Cocamide DEA; coconut oil diethanolamine; n,n-Bis(2-hydroxyethyl) cocoamide; n,n-Bis(2-hydroxyethyl) coconut fatty acid amide; n,n-Bis(2-hydroxyethyl) coconut oil amide; Coconut fatty acids diethanolamide; cas no: 68603-42-9
coco diethanolamide
Coconut de diéthanolamine, Numéro CAS : 68603-42-9, DIÉTHANOLAMIDE d'acides gras de coco,La diéthanolamide de coco s'obtient de la réaction des acides gras de l'huile de coco avec diéthanolamine. Noms français :Coconut de diéthanolamine, Diéthanolamide de coco, Diéthanolamide de coconut, Diéthanolamine d'huile de noix de coco condensée, Diéthanolamine de coconut Noms anglais :Amides, coco, N,N-bis(2-hydroxyethyl), Amides, coco, N-bis(hydroxyethyl)-, Coco diethanolamide, Cocodiethanolamine, Coconut acid, diethanolamide, Coconut diethanolamide Coconut oil acid diethanolamine,Coconut oil acid, diethanolamide, Coconut oil acids diethanolamide, Coconut oil acids, diethanolamide, Coconut oil amide, N,N-bis(2-hydroxyethyl)-, Coconut oil, diethanolamine condensate, Coconut oil fatty acids, diethanolamide, Coconut oil oil fatty acids diethanolamide, Coconut oil, diethanolamide, N,N-bis(2-Hydroxyethyl)cocoamide , N,N-bis(2-Hydroxyethyl)coconut fatty acid, N,N-bis(2-Hydroxyethyl)coconut fatty acid amide, N,N-bis(2-Hydroxyethyl)coconut oil amide Utilisation et sources d'émission, Fabrication de shampooing. Cocamide DEA; COCONUT DIETHANOLAMIDE; Coconut oil diethanolamine; Fatty Acid Diethanolamide; N,N,-bis-(2-hydroxyethyl)-coconut fatty acid amide; n,n-bis(2-hydroxyethyl) coco amides; N,N-bis(2-hydroxyethyl)dodecanamide
Coco diethanolamide ( Diethanolamide de coprah)
coco ethyl ester; coconut ethyl ester; cocoethylester; cocoethylesters; coconut; coconut ethylesters
COCO ETHYL ESTER
METHYL COCOATE; Methyl cocinate; Coconut fatty acid m; Kokoslfettsuremethylester; Fatty acids, coco, Me esters; Coconut fatty acid methyl ester CAS NO:61788-59-8
COCO METHYL ESTER
COCOALKONIUM CHLORIDE N° CAS : 61789-71-7 Nom INCI : COCOALKONIUM CHLORIDE N° EINECS/ELINCS : 263-080-8 Classification : Règlementé, Conservateur Ses fonctions (INCI) Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance Conservateur : Inhibe le développement des micro-organismes dans les produits cosmétiques.